Download Free Growth And Diffusion Phenomena Book in PDF and EPUB Free Download. You can read online Growth And Diffusion Phenomena and write the review.

Diffusion and growth phenomena abound in the real world surrounding us. Someexamples: growth of the world's population, growth rates of humans, public interest in news events, growth and decline of central city populations, pollution of rivers, adoption of agricultural innovations, and spreading of epidemics and migration of insects. These and numerous other phenomena are illustrations of typical growth and diffusion problems confronted in many branches of the physical, biological and social sciences as well as in various areas of agriculture, business, education, engineering medicine and public health. The book presents a large number of mathematical models to provide frameworks forthe analysis and display of many of these. The models developed and utilizedcommence with relatively simple exponential, logistic and normal distribution functions. Considerable attention is given to time dependent growth coefficients and carrying capacities. The topics of discrete and distributed time delays, spatial-temporal diffusion and diffusion with reaction are examined. Throughout the book there are a great many numerical examples. In addition and most importantly, there are more than 50 in-depth "illustrations" of the application of a particular framework ormodel based on real world problems. These examples provide the reader with an appreciation of the intrinsic nature of the phenomena involved. They address mainly readers from the physical, biological, and social sciences, as the only mathematical background assumed is elementary calculus. Methods are developed as required, and the reader can thus acquire useful tools for planning, analyzing, designing,and evaluating studies of growth transfer and diffusion phenomena. The book draws on the author's own hands-on experience in problems of environmental diffusion and dispersion, as well as in technology transfer and innovation diffusion.
The investigation of phenomena involving fractals has gone through a spectacular development in the last decade. Many physical, technological and biological processes have been shown to be related to and described by objects with non-integer dimensions. The physics of far-from-equilibrium growth phenomena represents one of the most important fields in which fractal geometry is widely applied. During the last couple of years considerable experimental, numerical and theoretical information has accumulated concerning such processes. This book, written by a well-known expert in the field, summarizes the basic concepts born in the studies of fractal growth and also presents some of the most important new results for more specialized readers. It also contains 15 beautiful color plates demonstrating the richness of the geometry of fractal patterns. Accordingly, it may serve as a textbook on the geometrical aspects of fractal growth and it treats this area in sufficient depth to make it useful as a reference book. No specific mathematical knowledge is required for reading this book which is intended to give a balanced account of the field.
In this concise, clear introduction, the authors describe the theory of spatial diffusion, its method of measurement and many of its applications. The seminal work of Torsten Hagerstrand, who introduced the original spatial model of diffusion, is outlined. The authors then summarise the developments that have been made to Hagerstrand's formulation, and make suggestions for future research.
This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
The formation of solids is governed by kinetic processes, which are closely related to the macroscopic behaviour of the resulting materials. With the main focus on ease of understanding, the author begins with the basic processes at the atomic level to illustrate their connections to material properties. Diffusion processes during crystal growth and phase transformations are examined in detail. Since the underlying mathematics are very complex, approximation methods typically used in practice are the prime choice of approach. Apart from metals and alloys, the book places special emphasis on the growth of thin films and bulk crystals, which are the two main pillars of modern device and semiconductor technology. All the presented phenomena are tied back to the basic thermodynamic properties of the materials and to the underlying physical processes for clarity.
MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
The Handbooks in Economics series continues to provide the various branches of economics with handbooks which are definitive reference sources, suitable for use by professional researchers, advanced graduate students, or by those seeking a teaching supplement.The Handbook of Economic Growth, edited by Philippe Aghion and Steven Durlauf, with an introduction by Robert Solow, features in-depth, authoritative survey articles by the leading economists working on growth theory.Volume 1A, the first in this two volume set, covers theories of economic growth, the empirics of economic growth, and growth policies and mechanisms.Volume 1B, the second in this two volume set, covers technology, trade and geography, and growth and socio-economic development.
" ... a compilation of lecture notes on various topics in nonlinear physics delivered by specialists during the summer schools organized by the Institut Non Linéaire de Nice (INLN) in Peyresq (French Alps of Provence) since 1998. The first volume, edited by R. Kaiser and J. Montaldi, contains courses from the years 1998 and 1999. This volume collects notes of the lectures given from the summers of 2000, 2001 and 2002"--Preface, v. 2.
An up-to-date collection of tutorial papers on the latest advances in the deposition and growth of thin films for micro and nano technologies. The emphasis is on fundamental aspects, principles and applications of deposition techniques used for the fabrication of micro and nano devices. The deposition of thin films is described, emphasising the gas phase and surface chemistry and its effects on the growth rates and properties of films. Gas-phase phenomena, surface chemistry, growth mechanisms and the modelling of deposition processes are thoroughly described and discussed to provide a clear understanding of the growth of thin films and microstructures via thermally activated, laser induced, photon assisted, ion beam assisted, and plasma enhanced vapour deposition processes. A handbook for engineers and scientists and an introduction for students of microelectronics.