Download Free Group Selection In Predator Prey Communities Book in PDF and EPUB Free Download. You can read online Group Selection In Predator Prey Communities and write the review.

Many animals regulate their population density by patterns of behavior that would be easy to explain if the forces of natural selection acted to optimize group properties. But Darwinian selection acts on individuals, not groups, and most simple theories have shown group selection to be too slow ever to oppose individual selection successfully. In this book Michael Gilpin presents a model, based on predator-prey dynamics, wherein nonlinear effects are important, so that small advantages to the selfish individual are nonlinearly amplified into disaster for his group. The result is that group selection can be rapid and powerful. Of course many instances of apparent group selection can be explained by kin selection; in other cases, close examination reveals that seemingly altruistic behavior directly benefits the individual genotype as well as the group. The value of the monograph is that it provides a robust model in which group selection, pure and unadulterated, can be seen to work.
The classic literature on predation dealt almost exclusively with solitary predators and their prey. Going back to Lotka-Volterra and optimal foraging theory, the theory about predation, including predator-prey population dynamics, was developed for solitary species. Various consequences of sociality for predators have been considered only recently. Similarly, while it was long recognized that prey species can benefit from living in groups, research on the adaptive value of sociality for prey species mostly emerged in the 1970s. The main theme of this book is the various ways that predators and prey may benefit from living in groups. The first part focusses on predators and explores how group membership influences predation success rate, from searching to subduing prey. The second part focusses on how prey in groups can detect and escape predators. The final section explores group size and composition and how individuals respond over evolutionary times to the challenges posed by chasing or being chased by animals in groups. This book will help the reader understand current issues in social predation theory and provide a synthesis of the literature across a broad range of animal taxa. Includes the whole taxonomical range rather than limiting it to a select few Features in-depth analysis that allows a better understanding of many subtleties surrounding the issues related to social predation Presents both models and empirical results while covering the extensive predator and prey literature Contains extensive illustrations and separate boxes that cover more technical features, i.e., to present models and review results
Understanding the mechanisms driving biological diversity remains a central problem in ecology and evolutionary biology. Traditional explanations assume that differences in selection pressures lead to different adaptations in geographically separated locations. This book takes a different approach and explores adaptive diversification--diversification rooted in ecological interactions and frequency-dependent selection. In any ecosystem, birth and death rates of individuals are affected by interactions with other individuals. What is an advantageous phenotype therefore depends on the phenotype of other individuals, and it may often be best to be ecologically different from the majority phenotype. Such rare-type advantage is a hallmark of frequency-dependent selection and opens the scope for processes of diversification that require ecological contact rather than geographical isolation. Michael Doebeli investigates adaptive diversification using the mathematical framework of adaptive dynamics. Evolutionary branching is a paradigmatic feature of adaptive dynamics that serves as a basic metaphor for adaptive diversification, and Doebeli explores the scope of evolutionary branching in many different ecological scenarios, including models of coevolution, cooperation, and cultural evolution. He also uses alternative modeling approaches. Stochastic, individual-based models are particularly useful for studying adaptive speciation in sexual populations, and partial differential equation models confirm the pervasiveness of adaptive diversification. Showing that frequency-dependent interactions are an important driver of biological diversity, Adaptive Diversification provides a comprehensive theoretical treatment of adaptive diversification.
The dazzling variation in plant chemistry is a primary mediator of trophic interactions, including herbivory, predation, parasitism, and disease. At the same time, such interactions feed back to influence spatial and temporal variation in the chemistry of plants. In this book, Mark Hunter provides a novel approach to linking the trophic interactions of organisms with the cycling of nutrients in ecosystems. Hunter introduces the concept of the "phytochemical landscape"—the shifting spatial and temporal mosaic of plant chemistry that serves as the nexus between trophic interactions and nutrient dynamics. He shows how plant chemistry is both a cause and consequence of trophic interactions, and how it also mediates ecosystem processes such as nutrient cycling. Nutrients and organic molecules in plant tissues affect decomposition rates and the fluxes of elements such as carbon, nitrogen, and phosphorus. The availability of these same nutrients influences the chemistry of cells and tissues that plants produce. In combination, these feedback routes generate pathways by which trophic interactions influence nutrient dynamics and vice versa, mediated through plant chemistry. Hunter provides evidence from terrestrial and aquatic systems for each of these pathways, and describes how a focus on the phytochemical landscape enables us to better understand and manage the ecosystems in which we live. Essential reading for students and researchers alike, this book offers an integrated approach to population-, community-, and ecosystem-level ecological processes.
Mutualistic interactions among plants and animals have played a paramount role in shaping biodiversity. Yet the majority of studies on mutualistic interactions have involved only a few species, as opposed to broader mutual connections between communities of organisms. Mutualistic Networks is the first book to comprehensively explore this burgeoning field. Integrating different approaches, from the statistical description of network structures to the development of new analytical frameworks, Jordi Bascompte and Pedro Jordano describe the architecture of these mutualistic networks and show their importance for the robustness of biodiversity and the coevolutionary process. Making a case for why we should care about mutualisms and their complex networks, this book offers a new perspective on the study and synthesis of this growing area for ecologists and evolutionary biologists. It will serve as the standard reference for all future work on mutualistic interactions in biological communities.
The number of species found at a given point on the planet varies by orders of magnitude, yet large-scale gradients in biodiversity appear to follow some very general patterns. Little mechanistic theory has been formulated to explain the emergence of observed gradients of biodiversity both on land and in the oceans. Based on a comprehensive empirical synthesis of global patterns of species diversity and their drivers, A Theory of Global Biodiversity develops and applies a new theory that can predict such patterns from few underlying processes. The authors show that global patterns of biodiversity fall into four consistent categories, according to where species live: on land or in coastal, pelagic, and deep ocean habitats. The fact that most species groups, from bacteria to whales, appear to follow similar biogeographic patterns of richness within these habitats points toward some underlying structuring principles. Based on empirical analyses of environmental correlates across these habitats, the authors combine aspects of neutral, metabolic, and niche theory into one unifying framework. Applying it to model terrestrial and marine realms, the authors demonstrate that a relatively simple theory that incorporates temperature and community size as driving variables is able to explain divergent patterns of species richness at a global scale. Integrating ecological and evolutionary perspectives, A Theory of Global Biodiversity yields surprising insights into the fundamental mechanisms that shape the distribution of life on our planet.
Recent decades have witnessed an explosion of theoretical and empirical studies of sex allocation, transforming how we understand the allocation of resources to male and female reproduction in vertebrates, invertebrates, protozoa, and plants. In this landmark book, Stuart West synthesizes the vast literature on sex allocation, providing the conceptual framework the field has been lacking and demonstrating how sex-allocation studies can shed light on broader questions in evolutionary and behavioral biology. West clarifies fundamental misconceptions in the application of theory to empirical data. He examines the field's successes and failures, and describes the research areas where much important work is yet to be done. West reveals how a shared underlying theoretical framework unites findings of sex-ratio variation across a huge range of life forms, from malarial parasites and hermaphroditic worms to sex-changing fish and mammals. He shows how research on sex allocation has been central to many critical questions and controversies in evolutionary and behavioral biology, and he argues that sex-allocation research serves as a key testing ground for different theoretical approaches and can help resolve debates about social evolution, parent-offspring conflict, genomic conflict, and levels of selection. Certain to become the defining book on the subject for the next generation of researchers, Sex Allocation explains why the study of sex allocation provides an ideal model system for advancing our understanding of the constraints on adaptation among all living things in the natural world.
This book provides a first synthetic view of an emerging area of ecology and biogeography, linking individual- and population-level processes to geographic distributions and biodiversity patterns. Problems in evolutionary ecology, macroecology, and biogeography are illuminated by this integrative view. The book focuses on correlative approaches known as ecological niche modeling, species distribution modeling, or habitat suitability modeling, which use associations between known occurrences of species and environmental variables to identify environmental conditions under which populations can be maintained. The spatial distribution of environments suitable for the species can then be estimated: a potential distribution for the species. This approach has broad applicability to ecology, evolution, biogeography, and conservation biology, as well as to understanding the geographic potential of invasive species and infectious diseases, and the biological implications of climate change. The authors lay out conceptual foundations and general principles for understanding and interpreting species distributions with respect to geography and environment. Focus is on development of niche models. While serving as a guide for students and researchers, the book also provides a theoretical framework to support future progress in the field.