Download Free Group Identities On Units And Symmetric Units Of Group Rings Book in PDF and EPUB Free Download. You can read online Group Identities On Units And Symmetric Units Of Group Rings and write the review.

Let FG be the group ring of a group G over a field F. Write U(FG) for the group of units of FG. It is an important problem to determine the conditions under which U(FG) satisfies a group identity. In the mid 1990s, a conjecture of Hartley was verified, namely, if U(FG) satisfies a group identity, and G is torsion, then FG satisfies a polynomial identity. Necessary and sufficient conditions for U(FG) to satisfy a group identity soon followed. Since the late 1990s, many papers have been devoted to the study of the symmetric units; that is, those units u satisfying u* = u, where * is the involution on FG defined by sending each element of G to its inverse. The conditions under which these symmetric units satisfy a group identity have now been determined. This book presents these results for arbitrary group identities, as well as the conditions under which the unit group or the set of symmetric units satisfies several particular group identities of interest.
Contains the Proceedings of an International Conference on Noncommutative Rings and Their Applications, held July 1-4, 2013, at the Universite d'Artois, Lens, France. It presents recent developments in the theories of noncommutative rings and modules over such rings as well as applications of these to coding theory, enveloping algebras, and Leavitt path algebras.
The Indian National. Science Academy has planned to bring out monographs on special topics with the aim of providing acce~sible surveys/reviews of topics of current research in various fields. Prof. S.K. Malik, FNA, Editor of Publications INSA asked me in October 1997 to edit a volume on algebra in this series. I invited a number of algebraists, several of them working in group rings, and it is with great satisfaction and sincere thanks to the authors that I present here in Algebra: Some Recent Advances the sixteen contributions received in response to my invitations. I.B.S. Passi On Abelian Difference Sets K. r Arasu* and Surinder K. Sehgal 1. Introduction We review some existence and nonexistence results - new and old - on abelian difference sets. Recent surveys on difference sets can be found in Arasu (1990), Jungnickel (1992a, b), Pott (1995), Jungnickel and Schmidt (1997), and Davis and Jedwab (1996). Standard references for difference sets are Baumert (1971), Beth et al. (1998), and Lander (1983). This article presents a flavour of the subject, by discussing some selected topics. Difference sets are very important in combinatorial design theory and in commu nication engineering while designing sequences with good correlation properties. Our extended bibliography covers a wide variety of papers written in the area of difference sets and related topics.
This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Since the book is addressed to graduate students as well as young researchers, all required background on these diverse areas, both old and new, is included. Supporting problems illustrate the results and complete some of the proofs. Volume 1 contains all the details on describing generic constructions of units and the subgroup they generate. Volume 2 mainly is about structure theorems and geometric methods. Without being encyclopaedic, all main results and techniques used to achieve these results are included. Basic courses in group theory, ring theory and field theory are assumed as background.
This volume consists of contributions by participants and speakers at two conferences. The first was entitled Combinatorial Group Theory, Discrete Groups and Number Theory and was held at Fairfield University, December 8-9, 2004. It was in honor of Professor Gerhard Rosenberger's sixtieth birthday. The second was the AMS Special Session on Infinite Group Theory held at Bard College, October 8-9, 2005. The papers in this volume provide a very interesting mix of combinatorial group theory, discrete group theory and ring theory as well as contributions to noncommutative algebraic cryptography.
Represents the proceedings of the conference on Groups, Rings and Group Rings, held July 28 - August 2, 2008, in Ubatuba, Brazil. This title contains results in active research areas in the theory of groups, group rings and algebras (including noncommutative rings), polynomial identities, Lie algebras and superalgebras.
Rings, Modules, Algebras, and Abelian Groups summarizes the proceedings of a recent algebraic conference held at Venice International University in Italy. Surveying the most influential developments in the field, this reference reviews the latest research on Abelian groups, algebras and their representations, module and ring theory, and topological
This volume contains the proceedings of the International Conference on Groups, Rings, Group Rings, and Hopf Algebras, held October 2–4, 2015 at Loyola University, Chicago, IL, and the AMS Special Session on Groups, Rings, Group Rings, and Hopf Algebras, held October 3–4, 2015, at Loyola University, Chicago, IL. Both conferences were held in honor of Donald S. Passman's 75th Birthday. Centered in the area of group rings and algebras, this volume contains a mixture of cutting edge research topics in group theory, ring theory, algebras and their representations, Hopf algebras and quantum groups.
Handbook of Algebra
This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.