Download Free Group Decision Making Based On Power Heronian Aggregation Operators Under Neutrosophic Cubic Environment Book in PDF and EPUB Free Download. You can read online Group Decision Making Based On Power Heronian Aggregation Operators Under Neutrosophic Cubic Environment and write the review.

Neutrosophic cubic sets can deal with the complex information by combining the neutrosophic sets and cubic sets, the power average (PA) can weaken some effects of awkward data from biased decision makers, and Heronian mean (HM) can deal with the interrelationship between the aggregated attributes or arguments. In this article, in order to consider the advantages of the PA and HM, we combined and extended them to process neutrosophic cubic information. Firstly, we defined a distance measure for neutrosophic cubic numbers, then we presented the neutrosophic cubic power Heronian aggregation operator and neutrosophic cubic power weighted Heronian aggregation operator, and some characters and special cases of these new aggregation operators were investigated. Furthermore, we gave a new approach for multiattribute group decision making based on new proposed operators. Finally, two examples were given to explain the validity and advantages of the developed approach by comparing with the existing method.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. Papers concern with neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributions to economics, finance, management, industries, electronics, and communications are promoted.
The neutrosophic cubic set (NCS) is a hybrid structure, which consists of interval neutrosophic sets (INS) (associated with the undetermined part of information associated with entropy) and single-valued neutrosophic set (SVNS) (associated with the determined part of information). NCS is a better tool to handle complex decision-making (DM) problems with INS and SVNS. The main purpose of this article is to develop some new aggregation operators for cubic neutrosophic numbers (NCNs), which is a basic member of NCS. Taking the advantages of Muirhead mean (MM) operator and power average (PA) operator, the power Muirhead mean (PMM) operator is developed and is scrutinized under NC information.
Neutrosophic cubic set (NCS) is the generalized version of neutrosophic sets and interval neutrosophic sets. It can deal with the complex information by combining the neutrosophic set (NS) and cubic set (CS). The partitioned Maclaurin symmetric mean (PMSM) operator can reflect the interrelationships among attributes where there are interrelationships among attributes in the same partition, but the attributes in different partitions are irrelevant. To effectively gather neutrosophic cubic information, we extend the PMSM operator to neutrosophic cubic environment and define the neutrosophic cubic partitioned Maclaurin symmetric mean (NCPMSM) operator and neutrosophic cubic weighted partitioned Maclaurin symmetric mean (NCWPMSM) operator. Later, we define a novel score function of NCS which overcome the drawbacks of the existing score functions. Next, based on NCWPMSM operator and the novel score function, we develop a multi-attribute group decision-making method. Finally, we give an example of supplier selection to illustrate the usefulness of the proposed multi-attribute group decision-making (MAGDM) method. At the same time, a comparative analysis is to show the effectiveness and advantages of the proposed method compared with the existing methods.
Interval neutrosophic sets (INSs) provide us with a more flexible and effective way to express incomplete, indeterminate, and inconsistent information..epurpose of this paper is to introduce the new multicriteria decision-making (MCDM) method based on the improved projection model under the interval neutrosophic environment. In this paper, we investigated the basic concepts and operational rules of interval neutrosophic numbers (INNs), then proposed the projection of two INNs and improved the entropy formula of the INNs. Furthermore, this paper took account into the decision maker’s attitude towards the indeterminacy and risk and proposed two different methods to determine the ideal solutions. Based on this, we presented an improved MCDM method based on the projection model under the interval neutrosophic environment. Finally, the practicability and reliability of the proposed method were explained by the example of software quality-in-use evaluation.
Safety is the fundamental guarantee for the sustainable development of mining enterprises. As the safety evaluation of mines is a complex system engineering project, consistent and inconsistent, even hesitant evaluation information may be contained simultaneously. Linguistic neutrosophic numbers (LNNs), as the extensions of linguistic terms, are effective means to entirely and qualitatively convey such evaluation information with three independent linguistic membership functions. The aim of our work is to investigate several mean operators so that the safety evaluation issues of mines are addressed under linguistic neutrosophic environment.
As an expansion of 2-tuple linguistic intuitionistic fuzzy set, the newly developed 2-tuple linguistic neutrosophic set (2-TLNS) is more satisfactory to define decision maker’s assessment information in decision making problems. 2-TLN aggregation operators are of great significance in multiple attribute group decision making (MAGDM) problems with a 2-tuple linguistic environment. Therefore, in this article our main contribution is to develop novel 2-TLN power Heronian aggregation (2-TLNPHM) operators.
This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors (alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali, Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao, Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas Kazimieras Zavadskas.
Single-valued neutrosophic sets (SVNSs), which involve in truth-membership, indeterminacy-membership and falsity-membership, play a significant role in describing the decision-makers’ preference information. In this study, a single-valued neutrosophic multi-criteria decision-making (MCDM) approach is developed based on Shapley fuzzy measures and power aggregation operator that takes a correlative relationship among criteria into account and also simultaneously reduces the effects of abnormal preference information.
This monograph discusses the theoretical and practical development of multicriteria decision making (MCDM). The main purpose of MCDM is the construction of systematized strategies for the "optimisation" of feasible options, as well as the justification of why some alternatives can be declared "optimal". However, at time, we must make decisions in an uncertain environment and such inconvenience gives rise to a much more elaborate scenario. This book highlights models where this lack of certainty can be flexibly fitted in and goes on to explore valuable strategies for making decisions under a multiplicity of criteria. Methods discussed include bipolar fuzzy TOPSIS method, bipolar fuzzy ELECTRE-I method, bipolar fuzzy ELECTRE-II method, bipolar fuzzy VIKOR method, bipolar fuzzy PROMETHEE method, and two-tuple linguistic bipolar fuzzy Heronian mean operators. This book is a valuable resource for researchers, computer scientists, and social scientists alike.