Download Free Groundwater Induced Geological Disasters In Underground Engineering Theoretical Experimental And Numerical Approaches Book in PDF and EPUB Free Download. You can read online Groundwater Induced Geological Disasters In Underground Engineering Theoretical Experimental And Numerical Approaches and write the review.

Water inrush (WI) is one of the most dangerous geological disasters in underground engineering, with significant human casualties and economic losses. To prevent and control WI disasters, great efforts have been made to address WI mechanisms for more than half a century. In particular, the seepage instability theory is hitherto one of the most widely used theoretical models. This theory portrays that the seepage system will undergo structural instability when the initial values of permeability and boundary pressure meet certain conditions, which manifests that the permeability parameter is one of the most valuable indicators to unveil WI mechanisms. However, rock permeability is determined by its internal structural characteristics, which can be affected by water chemical composition, stress environment, and temperature. In this regard, it is of great necessity and importance to facilitate a better understanding of the holistic impacts of multi-field coupling on rock internal structure and deformation failure characteristics. This Research Topic aims to initiate a global forum for presenting and disseminating the latest advancements of WI mechanisms, which entails the characterization of physical and laboratory tests, 3D reconstruction of rock internal structure, numerical approaches, theoretical models under multi-field coupling, and filed date analysis methods.
This Research Topic is Volume II of a series. The previous volume can be found here: Advances and Applications of Artificial Intelligence and Numerical Simulation in Risk Emergency Management and Treatment Our world is composed of multidimensional and multifaceted risks. In general, geological, environmental, and ecological risks would exist in both natural and engineering situations, such as karst desertification, water inrush, rock burst, debris flow, and landslide. These risks have great safety threats to human survival. In this regard, risk emergency management and treatment (REMT) has become a pivotal topic addressing the national governance system and its governance capacity. It underlines how to prevent and resolve grand security risks, to timely respond to all kinds of disasters and accidents, as well as to safeguard people’s lives and property and social stability.
Landslides and Engineered Slopes. Experience, Theory and Practice contains the invited lectures and all papers presented at the 12th International Symposium on Landslides, (Naples, Italy, 12-19 June 2016). The book aims to emphasize the relationship between landslides and other natural hazards. Hence, three of the main sessions focus on Volcanic-induced landslides, Earthquake-induced landslides and Weather-induced landslides respectively, while the fourth main session deals with Human-induced landslides. Some papers presented in a special session devoted to "Subareal and submarine landslide processes and hazard” and in a “Young Session” complete the books. Landslides and Engineered Slopes. Experience, Theory and Practice underlines the importance of the classic approach of modern science, which moves from experience to theory, as the basic instrument to study landslides. Experience is the key to understand the natural phenomena focusing on all the factors that play a major role. Theory is the instrument to manage the data provided by experience following a mathematical approach; this allows not only to clarify the nature and the deep causes of phenomena but mostly, to predict future and, if required, manage similar events. Practical benefits from the results of theory to protect people and man-made works. Landslides and Engineered Slopes. Experience, Theory and Practice is useful to scientists and practitioners working in the areas of rock and soil mechanics, geotechnical engineering, engineering geology and geology.
Professionals and students in any geology-related field will find this an essential reference. It clearly and systematically explains underground engineering geology principles, methods, theories and case studies. The authors lay out engineering problems in underground rock engineering and how to study and solve them. The book specially emphasizes mechanical and hydraulic couplings in rock engineering for wellbore stability, mining near aquifers and other underground structures where inflow is a problem.