Download Free Ground Vibration Engineering Book in PDF and EPUB Free Download. You can read online Ground Vibration Engineering and write the review.

Ground vibration consideration is gaining significance with people’s decreasing tolerance of vibration, introduction of new environmental legislations, increasing use of equipment sensitive to vibration, ageing of existing buildings and expanding construction sites to/near collapsible/liquefiable/thixotropic soil. This volume bridges the gap that exists between rather limited provisions of engineering codes/standards and complex numerical analyses/small-scale tests. The book contains descriptions of ground vibration measurements, predictions and control for engineers. Effects of most frequent sources of ground vibration arising from construction/demolition, traffic and machinery, ground wave amplification and attenuation as well as foundation kinematic and inertial interaction have been considered by simplified analyses aimed at ease and speed of use for major problems in ground vibration engineering. Comments on assumptions, limitations, and factors affecting the results are given. Case studies and examples worldwide are included to illustrate the accuracy and usefulness of simplified methods. A list of references is provided for further consideration, if desired. Audience: This work is of interest to geotechnical engineers, engineering geologists, earthquake engineers and students. Extra material: Microsoft Excel spreadsheets with the input data and results for the case studies and examples considered in this book are available at http://extras.springer.com
The objective of this book is to fill some of the gaps in the existing engineering codes and standards related to soil dynamics, concerning issues in earthquake engineering and ground vibrations, by using formulas and hand calculators. The usefulness and accuracy of the simple analyses are demonstrated by their implementation to the case histories available in the literature. Ideally, the users of the volume will be able to comment on the analyses as well as provide more case histories of simple considerations by publishing their results in a number of international journals and conferences. The ultimate aim is to extend the existing codes and standards by adding new widely accepted analyses in engineering practice. The following topics have been considered in this volume: • main ground motion sources and properties • typical ground motions, recording, ground investigations and testing • soil properties used in simple analyses • fast sliding in non-liquefied soil • flow of liquefied sandy soil • massive retaining walls • slender retaining walls • shallow foundations • piled foundations • tunnels, vertical shafts and pipelines • ground vibration caused by industry. Audience: This book is of interest to geotechnical engineers, engineering geologists, earthquake engineers and students
Engineering dynamics and vibrations has become an essential topic for ensuring structural integrity and operational functionality in different engineering areas. However, practical problems regarding dynamics and vibrations are in many cases handled without success despite large expenditures. This book covers a wide range of topics from the basics to advances in dynamics and vibrations; from relevant engineering challenges to the solutions; from engineering failures due to inappropriate accounting of dynamics to mitigation measures and utilization of dynamics. It lays emphasis on engineering applications utilizing state-of-the-art information.
Railways are an environmentally friendly means of transport well suited to modern society. However, noise and vibration are key obstacles to further development of the railway networks for high-speed intercity traffic, for freight and for suburban metros and light-rail. All too often noise problems are dealt with inefficiently due to lack of understanding of the problem. This book brings together coverage of the theory of railway noise and vibration with practical applications of noise control technology at source to solve noise and vibration problems from railways. Each source of noise and vibration is described in a systematic way: rolling noise, curve squeal, bridge noise, aerodynamic noise, ground vibration and ground-borne noise, and vehicle interior noise. - Theoretical modelling approaches are introduced for each source in a tutorial fashion - Practical applications of noise control technology are presented using the theoretical models - Extensive examples of application to noise reduction techniques are included Railway Noise and Vibration is a hard-working reference and will be invaluable to all who have to deal with noise and vibration from railways, whether working in the industry or in consultancy or academic research. David Thompson is Professor of Railway Noise and Vibration at the Institute of Sound and Vibration Research, University of Southampton. He has worked in the field of railway noise since 1980, with British Rail Research in Derby, UK, and TNO Institute of Applied Physics in the Netherlands before moving to Southampton in 1996. He was responsible for developing the TWINS software for predicting rolling noise. - Discusses fully the theoretical background and practical workings of railway noise - Includes the latest research findings, brought together in one place - Forms an extended case study in the application of noise control techniques
The entire field of construction-induced vibrations - including advances in earthquake engineering, nuclear blast protective design, and construction and mine blasting - is covered in this work. Frequency of vibration and strain form the foundation for the presentation of the material.
Mechanical Vibrations and Condition Monitoring presents a collection of data and insights on the study of mechanical vibrations for the predictive maintenance of machinery. Seven chapters cover the foundations of mechanical vibrations, spectrum analysis, instruments, causes and effects of vibration, alignment and balancing methods, practical cases, and guidelines for the implementation of a predictive maintenance program. Readers will be able to use the book to make predictive maintenance decisions based on vibration analysis. This title will be useful to senior engineers and technicians looking for practical solutions to predictive maintenance problems. However, the book will also be useful to technicians looking to ground maintenance observations and decisions in the vibratory behavior of machine components.
A thorough study of the oscillatory and transient motion of mechanical and structural systems, Engineering Vibrations, Second Edition presents vibrations from a unified point of view, and builds on the first edition with additional chapters and sections that contain more advanced, graduate-level topics. Using numerous examples and case studies, the author reviews basic principles, incorporates advanced abstract concepts from first principles, and weaves together physical interpretation and fundamental principles with applied problem solving. This revised version combines the physical and mathematical facets of vibration, and emphasizes the connecting ideas, concepts, and techniques.
The book reports on the 11th International Workshop on Railway Noise, held on 9 – 13 September, 2013, in Uddevalla, Sweden. The event, which was jointly organized by the Competence Centre Chalmers Railway Mechanics (CHARMEC) and the Departments of Applied Mechanics and Applied Acoustics at Chalmers University of Technology in Gothenburg, Sweden, covered a broad range of topics in the field of railway noise and vibration, including: prospects, legal regulations and perceptions; wheel and rail noise; prediction, measurements and monitoring; ground-borne vibration; squeal noise and structure-borne noise; and aerodynamic noise generated by high-speed trains. Further topics included: resilient track forms; grinding, corrugation and roughness; and interior noise and sound barriers. This book, which consists of a collection of peer-reviewed papers originally submitted to the workshop, not only provides readers with an overview of the latest developments in the field, but also offers scientists and engineers essential support in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems.
This manual provides direction for the preparation of noise and vibration sections of environmental documents for mass transportation projects. The manual has been developed in the interest of promoting quality and uniformity in assessments. It is expected to be used by people associated with or affected by the urban transit industry, including Federal Transit Administration (FTA) staff, grant applicants, consultants and the general public. Each of these groups has an interest in noise/vibration assessment, but not all have the need for all the details of the process. Consequently, this manual has been prepared to serve readers with varying levels of technical background and interests. It sets forth the basic concepts, methods and procedures for documenting the extent and severity of noise impacts from transit projects.