Download Free Grid Enabled Remote Instrumentation Book in PDF and EPUB Free Download. You can read online Grid Enabled Remote Instrumentation and write the review.

Grid architectures, which are viewed as tools for the integration of distributed resources, play a significant role as managers of computational resources, but also as aggregators of measurement instrumentation and pervasive large-scale data acquisition platforms. The functionality of a grid architecture allows managing, maintaining, and exploiting hetereogeneous instrumentation and acquisition devices in a unifed way by providing standardized interfaces and common work environments to their users. This result is achieved through the properties of isolation from the physical network and from the peculiarites of the instrumentation granted by standard middleware together with secure and flexibile mechanisms which seek, access, and aggregate distributed resources. This book focuses on a number of aspects related to the effective exploitation of remote instrumentation on the grid. These include middleware architecture, high speed networking in support of grid applications, wireless grid for acquisition devices and sensor networks, quality of service provisioning for real time control, and measurement instrumentation.
Accessing remote instrumentation worldwide is one of the goals of e-Science. The task of enabling the execution of complex experiments that involve the use of distributed scientific instruments must be supported by a number of different architectural domains, which inter-work in a coordinated fashion to provide the necessary functionality. These domains embrace the physical instruments, the communication network interconnecting the distributed systems, the service oriented abstractions and their middleware. The Grid paradigm (or, more generally, the Service Oriented Architecture -- SOA), viewed as a tool for the integration of distributed resources, plays a significant role, not only to manage computational aspects, but increasingly as an aggregator of measurement instrumentation and pervasive large-scale data acquisition platforms. In this context, the functionality of a SOA allows managing, maintaining and exploiting heterogeneous instrumentation and acquisition devices in a unified way, by providing standardized interfaces and common working environments to their users, but the peculiar aspects of dealing with real instruments of widely different categories may add new functional requirements to this scenario. On the other hand, the growing transport capacity of core and access networks allows data transfer at unprecedented speed, but new challenges arise from wireless access, wireless sensor networks, and the traversal of heterogeneous network domains. The book focuses on all aspects related to the effective exploitation of remote instrumentation and to the building complex virtual laboratories on top of real devices and infrastructures. These include SOA and related middleware, high-speed networking in support of Grid applications, wireless Grids for acquisition devices and sensor networks, Quality of Service (QoS) provisioning for real-time control, measurement instrumentation and methodology, as well as metrology issues in distributed systems.
The book focuses on all aspects related to the effective exploitation of remote instrumentation and to the building of complex virtual laboratories on top of real devices and infrastructures. These include service oriented architecture (SOA) and related middleware, high-speed networking in support of Grid applications, wireless Grids for acquisition devices and sensor networks, Quality Service (QoS) provisioning for real-time control, measurement instrumentation and methodology, as well as metrology issues in distributed systems.
This book will focus on new Remote Instrumentation aspects related to middleware architecture, high-speed networking, wireless Grid for acquisition devices and sensor networks, QoS provisioning for real-time control, measurement instrumentation and methodology. Moreover, it will provide knowledge about the automation of mechanisms oriented to accompanying processes that are usually performed by a human. Another important point of this book is focusing on the future trends concerning Remote Instrumentation systems development and actions related to standardization of remote instrumentation mechanisms.
This book presents research from many of the major projects involved in the emerging global grid infrastructure. With a particular focus on the practical advantages and applications of grid computing – including real case studies – the book provides an in-depth study of grid technology for a wide range of different needs. Topics: examines a remote instrumentation infrastructure, and a methodology to support e-science applications on e-infrastructures; describes the GEMS storage system, and pipeline workflows for optimizing end-to-end performance in wide-area networks; investigates semantic grid system architecture, social grid agents, and monitoring platforms designed for large-scale distributed systems; explores job control using service-level agreements; introduces the Composable Services Architecture for dynamic service provisioning, and the semantically driven communication middleware platform, Phoenix; discusses the PhyloGrid application, and a numerical simulation performed using grid computing.
This book constitutes the proceedings of the 6th International ICST Conference, TridentCom 2010, held in Berlin, Germany, in May 2010. Out of more than 100 submitted contributions the Program Committee finally selected 15 full papers, 26 practices papers, and 22 posters. They focus on topics as Internet testbeds, future Internet research, wireless sensors, media and mobility, and monitoring in large scale testbeds.
This book constitutes the refereed proceedings of the 4th International Conference on Grid and Pervasive Computing, GPC 2009, held in Geneva, Switzerland, in May 2009. The 42 revised full papers presented were carefully reviewed and selected from 112 submissions. The papers are organized in topical sections on grid economy, grid security, grid applications, middleware, scheduling, load balancing, pervasive computing, sensor networks, peer-to peer as well as fault tolerance.
This book is devoted to the investigation of the main issues related to the sustainable realization of tele-laboratories, where real and virtual instrumentation can be shared and used in a collaborative environment. The book contains peer reviewed chapters and each presents a self-contained treatment within a framework providing an up-to-date picture of the state-of-the-art and of the most recent developments of this multi-faceted topic.
Mathematical methods in engineering are characterized by a wide range of techniques for approaching various problems. Moreover, completely different analysis techniques can be applied to the same problem, which is justified by the difference in specific applications. Therefore, the study of the analyses and solutions of specific problems leads the researcher to generate their own techniques for the analysis of similar problems continuously arising in the process of technical development. Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications contains solutions to specific problems in current areas of computational engineering and cyberphysics.
This is Volume III of the four-volume set LNCS 3991-3994 constituting the refereed proceedings of the 6th International Conference on Computational Science, ICCS 2006. The 98 revised full papers and 29 revised poster papers of the main track presented together with 500 accepted workshop papers were carefully reviewed and selected for inclusion in the four volumes. The coverage spans the whole range of computational science.