Download Free Greenhouse Gas Mitigation Potential In Us Forestry And Agriculture Book in PDF and EPUB Free Download. You can read online Greenhouse Gas Mitigation Potential In Us Forestry And Agriculture and write the review.

Global climate change is a natural process that currently appears to be strongly influenced by human activities, which increase atmospheric concentrations of greenhouse gases (GHG). Agriculture contributes about 20% of the world's global radiation forcing from carbon dioxide, methane and nitrous oxide, and produces 50% of the methane and 70% of the nitrous oxide of the human-induced emission. Managing Agricultural Greenhouse Gases synthesizes the wealth of information generated from the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) effort with contributors from a variety of backgrounds, and reports findings with important international applications. - Frames responses to challenges associated with climate change within the geographical domain of the U.S., while providing a useful model for researchers in the many parts of the world that possess similar ecoregions - Covers not only soil C dynamics but also nitrous oxide and methane flux, filling a void in the existing literature - Educates scientists and technical service providers conducting greenhouse gas research, industry, and regulators in their agricultural research by addressing the issues of GHG emissions and ways to reduce these emissions - Synthesizes the data from top experts in the world into clear recommendations and expectations for improvements in the agricultural management of global warming potential as an aggregate of GHG emissions
This report assesses the potential of U.S. cropland to sequester carbon, concluding that properly applied soil restorative processes and best management practices can help mitigate the greenhouse effect by decreasing the emissions of greenhouse gases from U.S. agricultural activities and by making U.S. cropland a major sink for carbon sequestration. Topics include: Describe the greenhouse processes and global tends in emissions as well as the three principal components of anthropogenic global warming potential Present data on U.S. emissions and agriculture's related role Examines the soil organic carbon (SOC) pool in soils of the U.S. and its loss due to cultivation Provides a reference for the magnitude of carbon sequestration potential Analyzes the primary processes governing greenhouse gas emission from the pedosphere Establishes a link between SOC content and soil quality Outlines strategies for mitigating emissions from U.S. cropland Discusses soil erosion management Assesses the potential of using cropland to create biomass for direct fuel to produce power Details the potential for sequestering carbon by intensifying prime agricultural land The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect provides an exceptional framework for the adoption of science-based management methods on U.S. cropland, encouraging appropriate agricultural practices for the sustainable use of our natural resources and the improvement of our nation's environment.
Systems analysis in forestry has continued to advance in sophistication and diversity of application over the last few decades. The papers in this volume were presented at the eighth symposium in the foremost conference series worldwide in this subject area. Techniques presented include optimization and simulation modelling, decision support systems, alternative planning techniques, and spatial analysis. Over 30 papers and extended abstracts are grouped into the topical areas of (1) fire and fuels; (2) networks and transportation; (3) forest and landscape planning; (4) ecological modeling, biodiversity, and wildlife; and (5) forest resource applications. This collection will be of interest to forest planners and researchers who work in quantitative methods in forestry.
Countries globally are committing to achieve future greenhouse gas emissions reductions to address our changing climate, as outlined in the Paris Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) Conference of the Parties. These commitments, called nationally determined contributions (NDCs), are based on projected anthropogenic greenhouse gas (GHG) emissions levels across all sectors of the economy, including land use, land use change, and forestry (LULUCF) activities. Projecting LULUCF emissions is uniquely challenging, and the uncertainty of future LULUCF emissions could require additional mitigation efforts in the land use sectors to reduce the risk of NDC noncompliance. The objectives of this paper are to provide critical information on what forest sector mitigation activities are currently underway in the United States on private lands, review recent literature estimates of the mitigation potential from these activities (and associated economic costs), identify gaps in the literature where additional analytical work is needed, and provide recommendations for targeted mitigation strategies should US emissions approach or exceed targeted post-2020 NDC levels.
Greenhouse gas emissions by the livestock sector could be cut by as much as 30 percent through the wider use of existing best practices and technologies. FAO conducted a detailed analysis of GHG emissions at multiple stages of various livestock supply chains, including the production and transport of animal feed, on-farm energy use, emissions from animal digestion and manure decay, as well as the post-slaughter transport, refrigeration and packaging of animal products. This report represents the most comprehensive estimate made to-date of livestocks contribution to global warming as well as the sectors potential to help tackle the problem. This publication is aimed at professionals in food and agriculture as well as policy makers.
Forestry cannot be isolated from the forces that drive all economic activity. It involves using land, labour, and capital to produce goods and services from forests, while economics helps in understanding how this can be done in ways that will best meet the needs of people. Therefore, a firm grounding in economics is integral to sound forestry policies and practices. This book, a major revision and expansion of Peter H. Pearse’s 1990 classic, provides this grounding. Updated and enhanced with advanced empirical presentation of materials, it covers the basic economic principles and concepts and their application to modern forest management and policy issues. Forest Economics draws on the strengths of two of the field’s leading practitioners who have more than fifty years of combined experience in teaching forest economics in the United States and Canada. Its comprehensive and systematic analysis of forest issues makes it an indispensable resource for students and practitioners of forest management, natural resource conservation, and environmental studies.
Building on FAO policy advice and incorporating lessons from ongoing agricultural carbon finance projects of FAO and other organisations, this document aims to provide an overview of potential mitigation finance opportunities for soil carbon sequestration. The first part provides an overview of the opportunities for climate change mitigation from agricultural soil carbon sequestration. The second part is aimed primarily at carbon projects developers and decision makers at national level concerned with environmental and agriculture policies and incentives and farmers' associations working towards rural development and poverty alleviation.
We are not free from environmental risks that accompany the development of human societies. Modern economic development has accelerated environmental pollution, caused loss of natural habitats, and modified landscapes. These environmental changes have impacted natural systems: water and heat circulation, nutrient cycling, and biodiversity. These changes in natural systems degrade ecosystem services and subsequently increase environmental risks for humans. Environmental risks, therefore, are not only human health risks by pollution, climatic anomalies and natural disasters, but also degradation of ecosystem services on which most people are relying for their lives. We cannot entirely eliminate the risks, because it is not possible to attain zero impact on the environment, but we need to find a mechanism that minimizes environmental risks for human sustainably. This is the idea of the interdisciplinary framework of “environmental risk management” theory, which advocates harmony between economic development and environmental conservation. Based on this theory, the Sustainable Living with Environmental Risk (SLER) programme, adopted by the Japanese Ministry of Education (MEXT) as one of its strategic programmes, has been training graduate students at the Yokohama National University, Japan, from 2009 to 2013 to become future environmental leaders who will take the initiative in reducing the level of environmental risks and in protecting natural resources in the developing nations of Asia and Africa. This book provides students and teachers of this new academic field with a comprehensive coverage of case studies of environmental risks and their practical management technologies not only in Japan but also in developing nations in Asia and Africa.
The current analysis was conducted to evaluate the potential of nutritional, manure and animal husbandry practices for mitigating methane (CH4) and nitrous oxide (N2O) - i.e. non-carbon dioxide (CO2) - GHG emissions from livestock production. These practices were categorized into enteric CH4, manure management and animal husbandry mitigation practices. Emphasis was placed on enteric CH4 mitigation practices for ruminant animals (only in vivo studies were considered) and manure mitigation practices for both ruminant and monogastric species. Over 900 references were reviewed; simulation and life cycle assessment analyses were generally excluded
Land has long been overlooked in economics. That is now changing. A substantial part of the solution to the climate crisis may lie in growing crops for fuel and using trees for storing carbon. This book investigates the potential of these options to reduce greenhouse gas emissions, estimates the costs to the economy, and analyses the trade-offs with growing food. The first part presents new databases that are necessary to underpin policy-relevant research in the field of climate change while describing and critically assessing the underlying data, the methodologies used, and the first applications. Together, the new data and the extended models allow for a thorough and comprehensive analysis of a land use and climate policy. This book outlines key empirical and analytical issues associated with modelling land use and land use change in the context of global climate change policy. It places special emphasis on the economy-wide competition for land and other resources, especially; The implications of changes in land use for the cost of climate change mitigation, Land use change as a result of mitigation, and Feedback from changes in the global climate to land use. By offering synthesis and evaluation of a variety of different approaches to this challenging field of research, this book will serve as a key reference for future work in the economic analysis of land use and climate change policy.