Download Free Greenhouse Gas Emissions Book in PDF and EPUB Free Download. You can read online Greenhouse Gas Emissions and write the review.

The world's nations are moving toward agreements that will bind us together in an effort to limit future greenhouse gas emissions. With such agreements will come the need for all nations to make accurate estimates of greenhouse gas emissions and to monitor changes over time. In this context, the present book focuses on the greenhouse gases that result from human activities, have long lifetimes in the atmosphere and thus will change global climate for decades to millennia or more, and are currently included in international agreements. The book devotes considerably more space to CO2 than to the other gases because CO2 is the largest single contributor to global climate change and is thus the focus of many mitigation efforts. Only data in the public domain were considered because public access and transparency are necessary to build trust in a climate treaty. The book concludes that each country could estimate fossil-fuel CO2 emissions accurately enough to support monitoring of a climate treaty. However, current methods are not sufficiently accurate to check these self-reported estimates against independent data or to estimate other greenhouse gas emissions. Strategic investments would, within 5 years, improve reporting of emissions by countries and yield a useful capability for independent verification of greenhouse gas emissions reported by countries.
Global climate change is a natural process that currently appears to be strongly influenced by human activities, which increase atmospheric concentrations of greenhouse gases (GHG). Agriculture contributes about 20% of the world's global radiation forcing from carbon dioxide, methane and nitrous oxide, and produces 50% of the methane and 70% of the nitrous oxide of the human-induced emission. Managing Agricultural Greenhouse Gases synthesizes the wealth of information generated from the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) effort with contributors from a variety of backgrounds, and reports findings with important international applications. - Frames responses to challenges associated with climate change within the geographical domain of the U.S., while providing a useful model for researchers in the many parts of the world that possess similar ecoregions - Covers not only soil C dynamics but also nitrous oxide and methane flux, filling a void in the existing literature - Educates scientists and technical service providers conducting greenhouse gas research, industry, and regulators in their agricultural research by addressing the issues of GHG emissions and ways to reduce these emissions - Synthesizes the data from top experts in the world into clear recommendations and expectations for improvements in the agricultural management of global warming potential as an aggregate of GHG emissions
This book covers the exchange of greenhouse gases in various ecosystems, biomes and climatic zones, and discusses the measurement, modelling and processes involved in these exchange dynamics. It reflects the growing body of knowledge on the characterization, feedback processes and interaction of greenhouse gases with ecosystems and the impact of human activities. Offering a compilation of selected case studies prepared by international researchers working in the field, it represents a valuable resource for researchers and students alike.
In a time when an unquestionable link between anthropogenic emissions of greenhouse gases and climatic changes has finally been acknowledged and * widely documented through IPCC reports, the need for precise estimates of greenhouse gas (GHG) production rates and emissions from natural as well as managed ecosystems has risen to a critical level. Future agreements between nations concerning the reduction of their GHG emissions will - pend upon precise estimates of the present level of these emissions in both natural and managed terrestrial and aquatic environments. From this viewpoint, the present volume should prove to a benchmark contribution because it provides very carefully assessed values for GHG emissions or exchanges between critical climatic zones in aquatic en- ronments and the atmosphere. It also provides unique information on the biases of different measurement methods that may account for some of the contradictory results that have been published recently in the literature on this subject. Not only has a large array of current measurement methods been tested concurrently here, but a few new approaches have also been developed, notably laser measurements of atmospheric CO concentration 2 gradients. Another highly useful feature of this book is the addition of - nitoring and process studies as well as modeling.
The GHG Protocol Corporate Accounting and Reporting Standard helps companies and other organizations to identify, calculate, and report GHG emissions. It is designed to set the standard for accurate, complete, consistent, relevant and transparent accounting and reporting of GHG emissions.
The current analysis was conducted to evaluate the potential of nutritional, manure and animal husbandry practices for mitigating methane (CH4) and nitrous oxide (N2O) - i.e. non-carbon dioxide (CO2) - GHG emissions from livestock production. These practices were categorized into enteric CH4, manure management and animal husbandry mitigation practices. Emphasis was placed on enteric CH4 mitigation practices for ruminant animals (only in vivo studies were considered) and manure mitigation practices for both ruminant and monogastric species. Over 900 references were reviewed; simulation and life cycle assessment analyses were generally excluded
Greenhouse Gases Balance of Bioenergy Systems covers every stage of a bioenergy system, from establishment to energy delivery, presenting a comprehensive, multidisciplinary overview of all the relevant issues and environmental risks. It also provides an understanding of how these can be practically managed to deliver sustainable greenhouse gas reductions. Its expert chapter authors present readers to the methods used to determine the greenhouse gas balance of bioenergy systems, the data required and the significance of the results obtained. It also provides in-depth discussion of key issues and uncertainties, such as soil, agriculture, forestry, fuel conversion and emissions formation. Finally, international case studies examine typical GHG reduction levels for different systems and highlight best practices for bioenergy GHG mitigation. For bringing together into one volume information from several different fields that was up until now scattered throughout many different sources, this book is ideal for researchers, graduate students and professionals coming into the bioenergy field, no matter their previous background. It will be particularly useful for bioenergy researchers seeking to calculate greenhouse gas balances for systems they are studying. I will also be an important resource for policy makers and energy analysts. - Uses a multidisciplinary approach to synthesize the diverse information that is required to competently execute GHG balances for bioenergy systems - Presents an in-depth understanding of the science underpinning key issues and uncertainty in GHG assessments of bioenergy systems - Includes case studies that examine ways to maximize the GHG reductions delivered by different bioenergy systems
This book begins with a brief background on greenhouse gases sources and sinks and continues with a discussion in different sectors including forest fluxes to human health and modeling techniques to policy measures. The chapters explore in detail about the GHG emission budgets, mitigation strategies, technical advancement and input-output analysis. Greenhouse gases (GHGs) occur naturally in our atmosphere and are essential to the survival of most of the organisms on the planet earth. GHGs such as such as carbon dioxide, methane, nitrous oxide, and ozone etc. play a major role in balancing the radiative budget, by absorbing or emitting some of the infrared rays reflecting from the earth’s surface. But unfortunately, anthropogenic activities like use of fossil fuel, intensive agriculture and livestock farming, use of synthetic fertilizers, deforestation, and industrial processes etc. have drastically interfered in the natural air composition, by releasing excess greenhouse gases into the atmosphere. This has led to the increase in the ability of the atmosphere to absorb more infrared energy. This book is a complete information set covering all aspects of GHGs, sources, sinks and control/mitigation strategies. This book is also written in simple language with helpful photographs, diagrams and flowcharts which will make the reader comfortable in understanding the concepts a more relatively easier way. The book is a valuable tool for students in Environmental Science, Ecology, Biological Science, Economics and Agriculture. It is unique to environmental consultants, researchers and other professionals involved in climate change studies, Non-governmental organizations (NGO’s).
Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming.
The wide adoption of wastewater treatment processes and use of novel technologies for improvement of nitrogen and phosphorus removals from wastewater have been introduced to meet stringent discharge standards. Municipal wastewater treatment plants (MWWTPs) are one of major contributors to the increase in the global GHG emissions and therefore it is necessary to carry out intensive studies on quantification, assessment and characterization of GHG emissions in wastewater treatment plants, on the life cycle assessment from GHG emission prospective, and on the GHG mitigation strategies. Greenhouse Gas Emission and Mitigation in Municipal Wastewater Treatment Plants summarizes the recent development in studies of greenhouse gas emissions (N2O, CH4 and CO2) in MWWTPs. It also summarizes the development in life cycle assessment on GHG emissions in consideration of the energy usage in MWWTPs. The strategies in mitigating GHG emissions are discussed and the book provides an overview for researchers, students, water professionals and policy makers on GHG emission and mitigation in MWWTPS and industrial wastewater treatment processes. The book is a valuable resource for undergraduate and postgraduate students in the water, climate, and energy areas of research. It is also a useful reference source for water professionals, government policy makers, and research institutes.