Download Free Greenhouse Design And Control Book in PDF and EPUB Free Download. You can read online Greenhouse Design And Control and write the review.

Agricultural production is one of the main keys to the development of healthy societies. It is anticipated that agricultural systems will increasingly have to contend with temperature, humidity and water stress in the near future. This makes the need to increase the efficiency of land and water use ever more urgent. The control and design of greenhouses allows to increase dramatically the quality of crops and extend the cultivation period year-round. A properly designed autonomous greenhouse based on hydroponics can greatly reduce the amounts of nutrients and energy expended in agricultural production. This book deals with different types of greenhouses, materials, structures, advanced control techniques and tendencies that are needed for designing and controlling an advanced greenhouse. The control system is presented as an integral system which covers the explanation of basic and advanced concepts for a real time controller. Also, structural analysis is introduced, whereby mechanical design is regarded as a key factor. The book incorporates simulations and experimental results, and utilizes LabVIEW and ADAMS software. Finally, it provides a perspective on the present state and future of greenhouses globally. Written in a highly accessible manner, this book will prove useful to horticulturalists, agricultural engineers, greenhouse engineers and designers. Its easy-to-absorb contents are also suitable for (under)graduate students and researchers in agricultural and electronic engineering, horticulture, crop cultivation and soft computing.
This book deals with different types of greenhouses, materials, structures, advanced control techniques and tendencies that are needed for designing and controlling an advanced greenhouse. The control system is presented as an integral system which covers the explanation of basic and advanced concepts for a real time controller. Also, structural analysis is introduced, whereby mechanical design is regarded as a key factor. The book incorporates simulations and experimental results, and utilizes LabVIEW and ADAMS software. Finally, it provides a perspective on the present state and future of greenhouses globally.
Careful planning is important before a home greenhouse project is started. Building a greenhouse does not need to be expensive or time-consuming. The final choice of the type of greenhouse will depend on the growing space desired, home architecture, available sites, and costs. The greenhouse must, however, provide the proper environment for growing plants. The greenhouse should be located where it gets maximum sunlight. The first choice of location is the south or southeast side of a building or shade trees. Sunlight all day is best, but morning sunlight on the east side is sufficient for plants. Morning sunlight is most desirable because it allows the plant's food production process to begin early; thus growth is maximized. An east side location captures the most November to February sunlight. The next best sites are southwest and west of major structures, where plants receive sunlight later in the day. North of major structures is the least desirable location and is good only for plants that require little light. Good drainage is another requirement for the site. When necessary, build the greenhouse above the surrounding ground so rainwater and irrigation water will drain away. Other site considerations include the light requirements of the plants to be grown; locations of sources of heat, water, and electricity; and shelter from winter wind. Access to the greenhouse should be convenient for both people and utilities.
Crop production in greenhouses is a growing industry, especially in mild climates, and is very important for the population as a source of income and clean, fresh food. Greenhouses create optimal climate conditions for crop growth and protect crops from outside pests. At the same time greenhouse production increases water use efficiency and makes integrated production and protection (IPP) possible. This book provides technical instructions for practice (what to do and what not to do) and gives answers to the question: How to produce more clean crops and better quality with less water, less land and less pesticide. Suitable greenhouse constructions and their design, adapted to local climates in subtropical, tropical and arid regions and infrastructure conditions are presented. The necessary climate control measures - light transmittance, ventilation, cooling, heating, and CO2 enrichment - and physical measures for pest control, as well as methods for using solar energy to desalinate salty water are described. The results of theoretical research are transferred into methods for practical use, so that readers are equipped to solve their problems in practice as well as to get stimulation for further research and development.
Greenhouse control system manufacturers produce equipment and software with hundreds of settings and, while they hold training courses on how to adjust these settings, there is as yet no integrated instruction on when or why. Despite rapid growth in the greenhouse industry, growers are still faced with a multitude of variables and no unifying frame
Build your own passive solar greenhouse for year-round food production in any climate Fresh, local nutrient-dense fruits vegetables are hard to find in winter in cold climates. Growing warm-weather crops like tomatoes, bananas, avocados, and other perennials is nearly impossible using conventional structures. The solution for millions of backyard and small-scale commercial growers is self-heating solar greenhouses. The Year-round Solar Greenhouse is the one-stop guide to designing and building greenhouses that harness and store energy from the sun to create naturally heated, lush growing environments even in the depths of winter, covering principles of solar greenhouse design and siting, glazing material properties and selection, controlling heat loss, ventilation, and construction methods. Additionally, an in-depth section covers sustainable ways of heating the greenhouse without fossil fuels, including using thermal mass and storing heat underground with a ground to air heat exchanger. Variations include attached solar greenhouses, earth sheltered greenhouses, plus integrating hydroponics and aquaponics. More than a dozen case studies from across North America provide inspiration and demonstrate specific challenges and solutions for growing year-round in any climate. Grow your own food, anytime, anywhere using the power of the sun!
Translation of the second ed.: Invernaderos de plaastico: tecnologaia y manejo.
A discussion of challenges related to the modeling and control of greenhouse crop growth, this book presents state-of-the-art answers to those challenges. The authors model the subsystems involved in successful greenhouse control using different techniques and show how the models obtained can be exploited for simulation or control design; they suggest ideas for the development of physical and/or black-box models for this purpose. Strategies for the control of climate- and irrigation-related variables are brought forward. The uses of PID control and feedforward compensators, both widely used in commercial tools, are summarized. The benefits of advanced control techniques—event-based, robust, and predictive control, for example—are used to improve on the performance of those basic methods. A hierarchical control architecture is developed governed by a high-level multiobjective optimization approach rather than traditional constrained optimization and artificial intelligence techniques. Reference trajectories are found for diurnal and nocturnal temperatures (climate-related setpoints) and electrical conductivity (fertirrigation-related setpoints). The objectives are to maximize profit, fruit quality, and water-use efficiency, these being encouraged by current international rules. Illustrative practical results selected from those obtained in an industrial greenhouse during the last eight years are shown and described. The text of the book is complemented by the use of illustrations, tables and real examples which are helpful in understanding the material. Modeling and Control of Greenhouse Crop Growth will be of interest to industrial engineers, academic researchers and graduates from agricultural, chemical, and process-control backgrounds.
This publication emphasises that an interdisciplinary and multi-disciplinary cooperation of scientists throughout the world is important in solving the complex problems facing the greenhouse industry. The book itself is an outstanding example of such cooperation.The aim of the book is to describe and analyse crop production in greenhouses in relation to climate control, to redefine the problem of (optimal) control from a theoretical point of view, and to provide a suitable framework for the design of new, scientifically based control systems. Though the principles are generally applicable, they are discussed against the background of the Dutch greenhouse industry. To provide the reader with some background information, the historical developments and the economic position of the Dutch horticultural industry are briefly reviewed in the introductory chapter. ...this book will certainly become a reference as such an extensive review on the greenhouse-crop system and its control is lacking for research and teaching... (Scientia Horticultura)
“A prescription for survival in this gorgeously illustrated and accessible guide to the future of farming.” —Albert Bates, author of The Biochar Solution Grow vegetables year-round in a greenhouse powered only by solar energy! Originally developed in China to feed millions, Chinese greenhouses are earth-sheltered, solar-heated, east-west oriented, intelligently glazed, and well-insulated. They have proven highly effective in growing warm-weather vegetables and fruits like green peppers and tomatoes in cold climates through fall, winter, and early spring using passive solar energy as the sole heat source. The Chinese Greenhouse is a full-color comprehensive guide to these passive solar greenhouses for self-sufficiency and growing year-round in soil or aquaponic grow beds with no additional heat. Coverage includes: How to design, build, and operate a Chinese greenhouse How to improve performance via short-term and long-term heat banking How to provide additional heat to make your greenhouse operate even more effectively How to cool the greenhouse during the summer. Become a more self-sufficient gardener, growing and harvesting a variety of fresh fruits and vegetables year-round, with your own Chinese greenhouse. “Wonderfully researched . . . brilliant.” —Jean-Martin Fortier, farmer and author of The Market Gardener, editor of Growers Magazine “Essential reading for pioneers of Chinese greenhouses.” —Pam Dawling, author of The Year-Round Hoophouse and Sustainable Market Farming “Every enthusiastic vegetable farmer dreams of this winter-growing miracle, and Dan shows how to do it.” —Shawna Coronado, author of 101 Organic Gardening Hacks