Download Free Green Synthesis Characterization And Applications Of Nanoparticles Book in PDF and EPUB Free Download. You can read online Green Synthesis Characterization And Applications Of Nanoparticles and write the review.

Green Synthesis, Characterization and Applications of Nanoparticles shows how eco-friendly nanoparticles are engineered and used. In particular, metal nanoparticles, metal oxide nanoparticles and other categories of nanoparticles are discussed. The book outlines a range of methodologies and explores the appropriate use of each. Characterization methods include spectroscopic, microscopic and diffraction methods, but magnetic resonance methods are also included as they can be used to understand the mechanism of nanoparticle synthesis using organisms. Applications covered include targeted drug delivery, water purification and hydrogen generation. This is an important research resource for those wishing to learn more about how eco-efficient nanoparticles can best be used. Theoretical details and mathematical derivations are kept to a necessary minimum to suit the need of interdisciplinary audiences and those who may be relatively new to the field. - Explores recent trends in growth, characterization, properties and applications of nanoparticles - Gives readers an understanding on how they are applied through the use of case studies and examples - Assesses the advantages and disadvantages of a variety of synthesis and characterization techniques for green nanoparticles in different situations
This groundbreaking book uniquely focuses on the exploration of the green synthesis of metal nanoparticles and their characterization and applications. Metal nanoparticles are the basic elements of nanotechnology as they are the primary source used in the design of nanostructured devices and materials. Nanomaterials can be manufactured either incidentally, with physical or chemical methods, or naturally; and the high demand for them has led to their large-scale production by various toxic solvents or high energy techniques. However, due to the growing awareness of environmental and safety issues, the use of clean, nontoxic and environment-friendly ways to synthesize metal nanoparticles has emerged out of necessity. The use of biological resources, such as microbes, plant parts, vegetable wastes, agricultural wastes, gums, etc., has grown to become an alternative way of synthesizing metal nanoparticles. This biogenic synthesis is green, environmentally friendly, cost-effective, and nontoxic. The current multi-authored book includes recent information and builds a database of bioreducing agents for various metal nanoparticles using different precursor systems. Green Metal Nanoparticles also highlights different simple, cost-effective, environment-friendly and easily scalable strategies, and includes parameters for controlling the size and shape of the materials developed from the various greener methods.
An authoritative summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application for environmental sustainability Green Synthesis of Nanomaterials for Bioenergy Applications is an important guide that provides information on the fabrication of nanomaterial and the application of low cost, green methods. The book also explores the impact on various existing bioenergy approaches. Throughout the book, the contributors—noted experts on the topic—offer a reliable summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application to the field of environmental sustainability. The green synthesis of nanoparticles process has been widely accepted as a promising technique that can be applied to a variety of fields. The green nanotechnology-based production processes to fabricate nanomaterials operates under green conditions without the intervention of toxic chemicals. The book’s exploration of more reliable and sustainable processes for the synthesis of nanomaterials, can lead to the commercial application of the economically viability of low-cost biofuels production. This important book: Summarizes the quest for an environmentally sustainable synthesis process of nanomaterials for their application to the field of environmental sustainability Offers an alternate, sustainable green energy approach that can be commercially implemented worldwide Covers recent approaches such as fabrication of nanomaterial that apply low cost, green methods and examines its impact on various existing bioenergy applications Written for researchers, academics and students of nanotechnology, nanosciences, bioenergy, material science, environmental sciences, and pollution control, Green Synthesis of Nanomaterials for Bioenergy Applications is a must-have guide that covers green synthesis and characterization of nanomaterials for cost effective bioenergy applications.
This book describes various strategies for the synthesis of green nanoparticles using plant extracts and microbes, including the advantages and disadvantages of different methods and their applications. After discussing strategies for and the potential of green synthesis of noble metal nanoparticles, it highlights the role of the solvent system. The book then explores the stability/toxicity of nanoparticles and the associated-surface engineering techniques for achieving biocompatibility, and examines the antimicrobial efficacy of green nanoparticles with regard to various bacterial pathogens, as well as the underlying cytotoxicity mechanisms. Lastly, the book addresses the potential applications of various green nanoparticles in cancer theranostics, and reviews a number of plant-mediated nanoparticles as potential pharmaceutical agents. Given its scope, the book will be of interest to all scientists and students wanting to learn more about the synthesis and applications of green nanoparticles.
There are physical and chemical methods of synthesis of nanomaterials. But due to the damage caused by these methods to the environment there is a pressing need of green nanotechnology, which is a clean and eco-friendly technology for the development of nanomaterials. The present book includes green synthesis of nanoparticles by algae, diatoms and plants. The mechanism behind the synthesis of nanoparticles will also be discussed. The book would be a valuable resource for students, researchers and teachers of biology, chemistry, chemical technology, nanotechnology, microbial technology and those who are interested in green nanotechnology.
A state-of-the-art reference, Metal Nanoparticles offers the latest research on the synthesis, characterization, and applications of nanoparticles. Following an introduction of structural, optical, electronic, and electrochemical properties of nanoparticles, the book elaborates on nanoclusters, hyper-Raleigh scattering, nanoarrays, and several applications including single electron devices, chemical sensors, biomolecule sensors, and DNA detection. The text emphasizes how size, shape, and surface chemistry affect particle performance throughout. Topics include synthesis and formation of nanoclusters, nanosphere lithography, modeling of nanoparticle optical properties, and biomolecule sensors.
"This reference of contributed chapters seeks to address not only how nanomaterials are created, used, or characterized, but also to apply this knowledge to the multidimensional industries, fields, and applications of nanomaterials and nanoscience by including topics such as both natural and manmade nanomaterials; the size, shape, reactivity, and other essential characteristics of nanomaterials; challenges and potential effects of using nanomaterials; and the advantages of nanomaterials with multidisciplinary uses"--
This book introduces the principles and mechanisms of the biological synthesis of nanoparticles from microorganisms, including bacteria, fungi, viruses, algae, and protozoans. It presents optimization processes for synthesis of microbes-mediated nanoparticles. The book also reviews the industrial and agricultural applications of microbially-synthesized nanoparticles. It also presents the medical applications of green nanoparticles, such as treating multidrug-resistant pathogens and cancer treatment. Further, it examines the advantages and prospects for the synthesis of nanoparticles by microorganisms. Lastly, it also presents the utilization of microbial-synthesized nanoparticles in the bioremediation of heavy metals.
Green Synthesis of Silver Nanomaterials illustrates how to biologically scale up silver nanoparticle synthesis. This book covers green synthesis of silver nanomaterials, via plants, agricultural waste, fungi, and microorganisms. Sections cover the synthesis and characterization of chemical and green synthesis, various types of silver nanomaterialism, the ability of different fungal species, such as filamentous fungi, to produce silver nanoparticles, the microbial synthesis of silver NMs, biosynthesis mechanisms, toxicity, fate and commercialization. As examples, greener pathways and mechanisms, toxicity of silver nanoparticles in aquatic life and in natural eco-systems, and strategies for the scaling up of green-synthesized nanomaterials are discussed. With the extended work in enhancing nanomaterials synthesis performance, and discovering their biomedical, environmental, and agricultural applications, it is hoped that the execution of these methods on a large scale and their industrial applications in different fields will take place in the near future. - Assesses the impact of a large variety of silver-based nanostructures in the biomedical, environmental and agri-food sectors - Discusses the major synthesis methods used for effectively processing plant-based silver nanoparticles - Outlines the potential and major challenges for adopting green synthesis methods on a mass scale
This book describes the different methodologies for producing and synthesizing silver nanoparticles (AgNPs) of various shapes and sizes. It also provides an in-depth understanding of the new methods for characterizing and modifying the properties of AgNPs as well as their properties and applications in various fields. This book is a useful resource for a wide range of readers, including scientists, engineers, doctoral and postdoctoral fellows, and scientific professionals working in specialized fields such as medicine, nanotechnology, spectroscopy, analytical chemistry diagnostics, and plasmonics.