Download Free Green Photonics And Smart Photonics Book in PDF and EPUB Free Download. You can read online Green Photonics And Smart Photonics and write the review.

In recent years, many efforts have been devoted in the study, development and application of Green Photonics and Smart Photonics. This book presents recent advances, both theoretical and applications, reflecting the cutting-edge technologies and research achievements within these research fields.Green Photonics intend to develop photonics technologies that can conserve energy, reduce pollution and create renewable energy. Light emitting diodes (LEDs) and solar cells with the characteristics of sustainable and low energy consumption are addressed in this book. The term of Smart Photonics reflect intelligence of optical and optoelectronic components with high sensitivity, fast response time and/or compact size. The book explores various aspects ofsmart photonics including fiber sensors, optoelectronic devices and waveguide devices. The chapters in this edited book are written by researchers who presented quality papers at the 2015 International Symposium of Next-Generation Electronics (ISNE 2015), which was held in Taipei, Taiwan. The ISNE 2015 provided a common forum in the areas of opto-electron devices, photonics, integrated circuits, and microelectronic systems and technologies. The technical program consisted of 5 plenary talks, 23 invited talks and more than 250 contributed oral and poster presentations. After a rigorous review process, the ISNE 2015 technical program committee has selected 10 outstanding presentations and invited the authors to prepare extended chapters for inclusion in this book. Of the 10 chapters, five focus on the subject of green photonics, and the others cover smart photonics.
This books focuses on recent break-throughs in the development of a variety of photonic devices, serving distances ranging from mm to many km, together with their electronic counter-parts, e.g. the drivers for lasers, the amplifiers following the detectors and most important, the relevant advanced VLSI circuits. It explains that as a consequence of the increasing dominance of optical interconnects for high performance workstation clusters and supercomputers their complete design has to be revised. This book thus covers for the first time the whole variety of interdependent subjects contributing to green photonics and electronics, serving communication and energy harvesting. Alternative approaches to generate electric power using organic photovoltaic solar cells, inexpensive and again energy efficient in production are summarized. In 2015, the use of the internet consumed 5-6% of the raw electricity production in developed countries. Power consumption increases rapidly and without some transformational change will use, by the middle of the next decade at the latest, the entire electricity production. This apocalyptic outlook led to a redirection of the focus of data center and HPC developers from just increasing bit rates and capacities to energy efficiency. The high speed interconnects are all based on photonic devices. These must and can be energy efficient but they operate in an electronic environment and therefore have to be considered in a wide scope that also requires low energy electronic devices, sophisticated circuit designs and clever architectures. The development of the next generation of high performance exaFLOP computers suffers from the same problem: Their energy consumption based on present device generations is essentially prohibitive.
This book provides the fundamental aspects of the diverse ranges of nanostructured materials (0D, 1D, 2D and 3D) for energy and environmental applications in a comprehensive manner written by specialists who are at the forefront of research in the field of energy and environmental science. Experimental studies of nanomaterials for aforementioned applications are discussed along with their design, fabrication and their applications, with a specific focus on catalysis, energy storage and conversion systems. This work also emphasizes the challenges of past developments and directions for further research. It also looks at details pertaining to the current ground – breaking of nanotechnology and future perspectives with a multidisciplinary approach to energy and environmental science and informs readers about an efficient utilization of nanomaterials to deliver solutions for the public.
Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.
Discusses the basic physical principles underlying thetechnology instrumentation of photonics This volume discusses photonics technology and instrumentation. Thetopics discussed in this volume are: Communication Networks; DataBuffers; Defense and Security Applications; Detectors; FiberOptics and Amplifiers; Green Photonics; Instrumentation andMetrology; Interferometers; Light-Harvesting Materials; LogicDevices; Optical Communications; Remote Sensing; Solar Energy;Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modernphotonics Emphasizes processes and applications that specifically exploitphoton attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences;Industrial and academic researchers in photonics, graduate studentsin the area; College lecturers, educators, policymakers,consultants, Scientific and technical libraries, governmentlaboratories, NIH.
The book presents the collated and high-quality proceedings of the Conference on Recent Technologies in Electronics and Photonics held during 9-10 February 2024 at MIT-WPU, Pune, India. The main objective of this book is the introduction of recent innovations and current trends of photonics and electronics along with advanced device applications. Photonics and electronics together are shaping up to be the two main pillars of innovation for sustainable development and technological advances. The emphasis in this book will be on presenting recent application-based research in the mentioned fields rather than purely theoretical ideas. The readers will gain insights on recent innovations across many fields of photonics on one hand: laser science and nonlinear optics, photonic materials, nanophotonics, solar photovoltaics, optoelectronics, green photonics, and fiber optics and a diverse set of topics in electronics on the other: Semiconductor Electronics, Electronic Materials, Microelectronics, AI/ML, Internet of Things etc. The book is useful for early career researchers in Science and Engineering, as also university professors and industry professionals.
Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.