Download Free Green Chemistry Applications Book in PDF and EPUB Free Download. You can read online Green Chemistry Applications and write the review.

Green chemistry is a work tool that can be applied in different areas such as medicine, materials, polymers, food, organic chemistry, etc., since it was propounded in the early 2000s. It has become a viable alternative for care, remediation and protection of the environment and has been implemented worldwide. In this book the twelve principles of green chemistry are presented in a simple way, with examples of the applications of green chemistry in numerous areas showcasing it as an ideal alternative for environmental care. It also provides information on current research being implemented at the pilot plant and industrial level. The book demonstrates the importance of the use of renewable raw materials, the use of catalysis and the implementation of alternative energy sources such as the use of microwaves and ultrasound in different separation and chemical processes.
Green Chemistry and Water Remediation: Research and Applications explores how integrating the principles of green chemistry into remediation research and practice can have a great impact from multiple directions. This volume reviews both common sources of chemical pollution and how using green chemistry as the basis for new or improved remediation techniques can ensure that remediation itself is conducted in a sustainable way. By outlining the main types of chemical pollutants in water and sustainable ways to address them, the authors hope to help chemists identify key areas and encourage them to integrate green chemistry into the design of new processes and products. In addition, the books highlights and encourages the use of the growing range of green remediation approaches available to experts, helping researchers, planners and managers make informed decisions in their selection of remediation techniques. - Puts the naturally-aligned fields of green chemistry and environmental remediation in context, providing key background to both - Highlights the use of both established and cutting-edge techniques for sustainable water remediation, including nanotechnology, biofiltration and phytoremediation - Explores the potential impact sustainability goals in chemical waste production and water remediation
This book highlights the potential and scope of green chemistry for clean and sustainable development. Covering the basics, the book introduces readers to the need and the many applications and benefits and advantages of environmentally friendly chemical practice and application in industry. The book addresses such topics as ecologically safe products, catalysts and solvents, conditions needed to produce such products, types of chemical processes that are conducive to green chemistry, and much more.
Urbanization, industrialization, and unethical agricultural practices have considerably negative effects on the environment, flora, fauna, and the health and safety of humanity. Over the last decade, green chemistry research has focused on discovering and utilizing safer, more environmentally friendly processes to synthesize products like organic compounds, inorganic compounds, medicines, proteins, enzymes, and food supplements. These green processes exist in other interdisciplinary fields of science and technology, like chemistry, physics, biology, and biotechnology, Still the majority of processes in these fields use and generate toxic raw materials, resulting in techniques and byproducts which damage the environment. Green chemistry principles, alternatively, consider preventing waste generation altogether, the atom economy, using less toxic raw materials and solvents, and opting for reducing environmentally damaging byproducts through energy efficiency. Green chemistry is, therefore, the most important field relating to the sustainable development of resources without harmfully impacting the environment. This book provides in-depth research on the use of green chemistry principles for a number of applications.
Many modern surface coatings and adhesives are derived from fossil feedstocks. With fossil fuels becoming more polluting and expensive to extract as supplies dwindle, industry is turning increasingly to nature, mimicking natural solutions using renewable raw materials and employing new technologies. Highlighting sustainable technologies and applications of renewable raw materials within the framework of green and sustainable chemistry, circular economy and resource efficiency, this book provides a cradle-to-cradle perspective. From potential feedstocks to recycling/reuse opportunities and the de-manufacture of adhesives and solvents, green chemistry principles are applied to all aspects of surface coating, printing, adhesive and sealant manufacture. This book is ideal for students, researchers and industrialists working in green sustainable chemistry, industrial coatings, adhesives, inks and printing technologies.
Chemical processes provide a diverse array of valuable products and materials used in applications ranging from health care to transportation and food processing. Yet these same chemical processes that provide products and materials essential to modern economies, also generate substantial quantities of wastes and emissions. Green Chemistry is the utilization of a set of principles that reduces or eliminate the use or generation of hazardous substances in design. Due to extravagant costs needed to managing these wastes, tens of billions of dollars a year, there is a need to propose a way to create less waste. Emission and treatment standards continue to become more stringent, which causes these costs to continue to escalate. Green Chemistry and Engineering describes both the science (theory) and engineering (application) principles of Green Chemistry that lead to the generation of less waste. It explores the use of milder manufacturing conditions resulting from the use of smarter organic synthetic techniques and the maintenance of atom efficiency that can temper the effects of chemical processes. By implementing these techniques means less waste, which will save industry millions of dollars over time. - Chemical processes that provide products and materials essential to modern economies generate substantial quantities of wastes and emissions, this new book describes both the science (theory) and engineering (application) principles of Green Chemistry that lead to the generation of less waste - This book contains expert advise from scientists around the world, encompassing developments in the field since 2000 - Aids manufacturers, scientists, managers, and engineers on how to implement ongoing changes in a vast developing field that is important to the environment and our lives
Everyone is becoming more environmentally conscious and therefore, chemical processes are being developed with their environmental burden in mind. This also means that more traditional chemical methods are being replaced with new innovations and this includes new solvents. Solvents are everywhere, but how necessary are they? They are used in most areas including synthetic chemistry, analytical chemistry, pharmaceutical production and processing, the food and flavour industry and the materials and coatings sectors. However, the principles of green chemistry guide us to use less of them, or to use safer, more environmentally friendly solvents if they are essential. Therefore, we should always ask ourselves, do we really need a solvent? Green chemistry, as a relatively new sub-discipline, is a rapidly growing field of research. Alternative solvents - including supercritical fluids and room temperature ionic liquids - form a significant portion of research in green chemistry. This is in part due to the hazards of many conventional solvents (e.g. toxicity and flammability) and the significant contribution that solvents make to the waste generated in many chemical processes. Solvents are important in analytical chemistry, product purification, extraction and separation technologies, and also in the modification of materials. Therefore, in order to make chemistry more sustainable in these fields, a knowledge of alternative, greener solvents is important. This book, which is part of a green chemistry series, uses examples that tie in with the 12 principles of green chemistry e.g. atom efficient reactions in benign solvents and processing of renewable chemicals/materials in green solvents. Readers get an overview of the many different kinds of solvents, written in such a way to make the book appropriate to newcomers to the field and prepare them for the 'green choices' available. The book also removes some of the mystique associated with 'alternative solvent' choices and includes information on solvents in different fields of chemistry such as analytical and materials chemistry in addition to catalysis and synthesis. The latest research developments, not covered elsewhere, are included such as switchable solvents and biosolvents. Also, some important areas that are often overlooked are described such as naturally sourced solvents (including ethanol and ethyl lactate) and liquid polymers (including poly(ethyleneglycol) and poly(dimethylsiloxane)). As well as these additional alternative solvents being included, the book takes a more general approach to solvents, not just focusing on the use of solvents in synthetic chemistry. Applications of solvents in areas such as analysis are overviewed in addition to the more widely recognised uses of alternative solvents in organic synthesis. Unfortunately, as the book shows, there is no universal green solvent and readers must ascertain their best options based on prior chemistry, cost, environmental benefits and other factors. It is important to try and minimize the number of solvent changes in a chemical process and therefore, the importance of solvents in product purification, extraction and separation technologies are highlighted. The book is aimed at newcomers to the field whether research students beginning investigations towards their thesis or industrial researchers curious to find out if an alternative solvent would be suitable in their work.
The use of synthetic chemical dyes in various industrial processes, including paper and pulp manufacturing, plastics, dyeing of cloth, leather treatment and printing, has increased considerably over the last few years, resulting in the release of dye-containing industrial effluents into the soil and aquatic ecosystems. The textile industry generates high-polluting wastewaters and their treatment is a very serious problem due to high total dissolved solids (TDS), presence of toxic heavy metals, and the non-biodegradable nature of the dyestuffs in the effluent. The chapters in this book provide an overview of the problem and its solution from different angles. These problems and solutions are presented in a genuinely holistic way by world-renowned researchers. Discussed are various promising techniques to remove dyes, including the use of nanotechnology, ultrasound, microwave, catalysts, biosorption, enzymatic treatments, advanced oxidation processes, etc., all of which are "green." Green Chemistry for Dyes Removal from Wastewater comprehensively discusses: Different types of dyes, their working and methodologies and various physical, chemical and biological treatment methods employed Application of advanced oxidation processes (AOPs) in dye removal whereby highly reactive hydroxyl radicals are generated chemically, photochemically and/or by radiolytic/ sonolytic means. The potential of ultrasound as an AOP is discussed as well. Nanotechnology in the treatment of dye removal types of adsorbents for removal of toxic pollutants from aquatic systems Photocatalytic oxidation process for dye degradation under both UV and visible light, application of solar light and solar photoreactor in dye degradation
The book explains the importance of chemistry in solving environmental issues by highlighting the role green chemistry plays in making the environment clean and green by covering a wide array of topics ranging from sustainable development, microwave chemical reaction, renewable feedstocks, microbial bioremediation, and other topics that, when implemented, will advance environmental improvement. Green Chemistry for Environmental Remediation provides insight on how educators from around the world have incorporated green chemistry into their classrooms and how the principles of green chemistry can be integrated into the curriculum. The volume presents high-quality research papers as well as in-depth review articles from eminent professors, scientists, chemists, and engineers both from educational institutions and from industry. It introduces a new emerging green face of multidimensional environmental chemistry. Each chapter brings forward the latest literature and research being done in the related area. The 23 chapters are divided into 4 sections: Green chemistry and societal sustainability including teaching and education of green chemistry Green lab technologies and alternative solutions to conventional laboratory techniques Green bio-energy sources as green technology frontiers Green applications and solutions for remediation Green Chemistry for Environmental Remediation is an important resource for academic researchers, students, faculty, industrial chemists, chemical engineers, environmentalists, and anyone interested in environmental policy safeguarding the environment. Relevant industries include those in clean technology, renewable energy, biotechnology, pharmaceutical, and chemicals. Another goal of the book is to promote and generate awareness about the relationship of green chemistry with the environment amongst the younger generation who might wish to pursue a career in green chemistry.
This book, appropriate for newcomers to the field, gives an overview of the many different kinds of solvents including alternative greener solvent choices.