Download Free Green Catalysis And Reaction Engineering Book in PDF and EPUB Free Download. You can read online Green Catalysis And Reaction Engineering and write the review.

This book explores a balance between energy and material, applied to chemical reactors with catalysis, to achieve a given purpose. It includes the fundamentals of chemical reaction engineering and explains reactor design fundamentals. The book spans the full range-from the fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies-to their equivalent large-scale industrial production processes. It also includes significant developments, with recent research case studies and literature.
Discover tools to perform Life Cycle Analysis (LCA) and develop sustainable chemical technologies in this valuable guide for chemists, engineers and practitioners. Tackling one of the key challenges of modern industrial chemical engineering, this book introduces tools to assess the environmental footprint and economics of key chemical processes that make the ingredients of everyday products such as plastics, synthetic fibers, detergents and fuels. Describing diverse industrial processes in detail, it provides process flow diagrams including raw material sourcing, catalytic reactors, separation units, process equipment and recycle streams. The book clearly explains elements of LCA and how various software tools, available in the public domain and commercially, can be used to perform LCA. Supported by real-world practical examples and case studies provided by industrial and academic chemists and chemical engineers, this is an essential tool for readers involved in implementing LCA, and developing next-generation sustainable chemical technologies.
Chemical processes provide a diverse array of valuable products and materials used in applications ranging from health care to transportation and food processing. Yet these same chemical processes that provide products and materials essential to modern economies, also generate substantial quantities of wastes and emissions. Green Chemistry is the utilization of a set of principles that reduces or eliminate the use or generation of hazardous substances in design. Due to extravagant costs needed to managing these wastes, tens of billions of dollars a year, there is a need to propose a way to create less waste. Emission and treatment standards continue to become more stringent, which causes these costs to continue to escalate. Green Chemistry and Engineering describes both the science (theory) and engineering (application) principles of Green Chemistry that lead to the generation of less waste. It explores the use of milder manufacturing conditions resulting from the use of smarter organic synthetic techniques and the maintenance of atom efficiency that can temper the effects of chemical processes. By implementing these techniques means less waste, which will save industry millions of dollars over time. - Chemical processes that provide products and materials essential to modern economies generate substantial quantities of wastes and emissions, this new book describes both the science (theory) and engineering (application) principles of Green Chemistry that lead to the generation of less waste - This book contains expert advise from scientists around the world, encompassing developments in the field since 2000 - Aids manufacturers, scientists, managers, and engineers on how to implement ongoing changes in a vast developing field that is important to the environment and our lives
Promotes a green approach to chemistry and chemical engineering for a sustainable planet With this text as their guide, students will gain a new outlook on chemistry and engineering. The text fully covers introductory concepts in general, organic, inorganic, and analytical chemistry as well as biochemistry. At the same time, it integrates such concepts as greenhouse gas potential, alternative and renewable energy, solvent selection and recovery, and ecotoxicity. As a result, students learn how to design chemical products and processes that are sustainable and environmentally friendly. Green Chemistry and Engineering presents the green approach as an essential tool for tackling problems in chemistry. A novel feature of the text is its integration of introductory engineering concepts, making it easier for students to move from fundamental science to applications. Throughout this text, the authors integrate several features to help students understand and apply basic concepts in general chemistry as well as green chemistry, including: Comparisons of the environmental impact of traditional chemistry approaches with green chemistry approaches Analyses of chemical processes in the context of life-cycle principles, demonstrating how chemistry fits within the complex supply chain Applications of green chemistry that are relevant to students' lives and professional aspirations Examples of successful green chemistry endeavors, including Presidential Green Chemistry Challenge winners Case studies that encourage students to use their critical thinking skills to devise green chemistry solutions Upon completing this text, students will come to understand that chemistry is not antithetical to sustainability, but rather, with the application of green principles, chemistry is the means to a sustainable planet.
Recently, supercritical fluids have emerged as more sustainable alternatives for the organic solvents often used in polymer processes. This is the first book emphasizing the potential of supercritical carbon dioxide for polymer processes from an engineering point of view. It develops a state-of-the-art overview on polymer fundamentals, polymerization reactions and polymer processing in supercritical carbon dioxide. The book covers topics in a multidisciplinary approach starting from polymer chemistry and thermodynamics, going through monitoring, polymerization processes and ending with polymer shaping and post-processing. The authors are internationally recognized experts from different fields in polymer reaction engineering in supercritical fluids. The book was initiated by the Working Party on Polymer Reaction Engineering of the European Federation of Chemical Engineering and further renowned international experts.
On the contrary, flow continuous processes present a series of advantages leading to new ways to synthesise chemical products.
This book serves as an introduction to the subject, giving readers the tools to solve real-world chemical reaction engineering problems. It features a section of fully solved examples as well as end of chapter problems. It includes coverage of catalyst characterization and its impact on kinetics and reactor modeling. Each chapter presents simple ideas and concepts which build towards more complex and realistic cases and situations. Introduces an in-depth kinetics analysis Features well developed sections on the major topics of catalysts, kinetics, reactor design, and modeling Includes a chapter that showcases a fully worked out example detailing a typical problem that is faced when performing laboratory work Offers end of chapter problems and a solutions manual for adopting professors Aimed at advanced chemical engineering undergraduates and graduate students taking chemical reaction engineering courses as well as chemical engineering professionals, this textbook provides the knowledge to tackle real problems within the industry.
Industrial Catalytic Processes for Fine and Specialty Chemicals provides a comprehensive methodology and state-of-the art toolbox for industrial catalysis. The book begins by introducing the reader to the interesting, challenging, and important field of catalysis and catalytic processes. The fundamentals of catalysis and catalytic processes are fully covered before delving into the important industrial applications of catalysis and catalytic processes, with an emphasis on green and sustainable technologies. Several case studies illustrate new and sustainable ways of designing catalysts and catalytic processes. The intended audience of the book includes researchers in academia and industry, as well as chemical engineers, process development chemists, and technologists working in chemical industries and industrial research laboratories. - Discusses the fundamentals of catalytic processes, catalyst preparation and characterization, and reaction engineering - Outlines the homogeneous catalytic processes as they apply to specialty chemicals - Introduces industrial catalysis and catalytic processes for fine chemicals - Includes a number of case studies to demonstrate the various processes and methods for designing green catalysts
Green chemistry and chemical engineering belong together and this twelth volume in the successful Handbook of Green Chemistry series represents the perfect one-stop reference on the topic. Written by an international team of specialists with each section edited by international leading experts, this book provides first-hand insights into the field, covering chemical engineering process design, innovations in unit operations and manufacturing, biorefining and much more besides. An indispensable source for every chemical engineer in industry and academia.
This first book to focus on catalytic processes from the viewpoint of green chemistry presents every important aspect: · Numerous catalytic reductions and oxidations methods · Solid-acid and solid-base catalysis · C-C bond formation reactions · Biocatalysis · Asymmetric catalysis · Novel reaction media like e.g. ionic liquids, supercritical CO2 · Renewable raw materials Written by Roger A. Sheldon -- without doubt one of the leaders in the field with much experience in academia and industry -- and his co-workers, the result is a unified whole, an indispensable source for every scientist looking to improve catalytic reactions, whether in the college or company lab.