Download Free Gravitational Waves From Binary Neutron Stars Systems Book in PDF and EPUB Free Download. You can read online Gravitational Waves From Binary Neutron Stars Systems and write the review.

This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear physics, astrophysics and gravitational physics, the study of neutron stars has seen enormous progress over the last years and has been very successful in improving our understanding in these fascinating compact objects. The book addresses a wide spectrum of readers, from students to senior researchers. Thirteen chapters written by internationally renowned experts offer a thorough overview of the various facets of this interdisciplinary science, from neutron star formation in supernovae, pulsars, equations of state super dense matter, gravitational wave emission, to alternative theories of gravity. The book was initiated by the European Cooperation in Science and Technology (COST) Action MP1304 “Exploring fundamental physics with compact stars” (NewCompStar).
The first observation of gravitational waves from a merger of binary neutron stars (BNS) along with measurements of electromagnetic counterpart has led the beginning of multi-messenger gravitational wave astronomy. In this thesis, we investigate various gravitational waveform models. These models are employed for extracting source properties from the gravitational wave signal from the BNS merger. We perform parameter estimation studies in order to deduce the systematics among these models. We employ different injection scenarios to understand the biases that occur due to differences in the physics included in different waveform models. We present the construction of hybrid waveforms and discuss their applications as a full waveform, e.g., for validation of other waveform models and to check the performance of the models by performing mismatch calculations and parameter estimation studies where hybrid waveforms used as a substitute for a real signal. Based on the systematics study, we show a few of the waveform models give biased esti- mates of the parameters for specific injection scenarios. We improve those models and present the results of the improved models. In the context of having an accurate yet fast-to-evaluate waveform model, we review reduced-order-modeling techniques and present its application for the multipolar TEOBResum model. Furthermore, to validate and tune analytical models, and to investigate the last few orbits near the merger and after the merger, numerical simulations are inevitable. We evaluate the performance of an initial data generating code, called new SGRID code for BNS systems. With the upcoming advance detectors, it is highly likely that events with extreme source properties will get observed. Therefore, in this thesis, we show preliminary results for numerical simulations of BNS mergers with high spins. We vary equation-of-states (EOSs) and spins to investigate the effects of spin and EOS on the dynamics and gravitational waves.
(I) We show that ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, relatively clean portion of the signal of detected neutron star neutron star inspirals.
This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitational wave astronomy and astrophysics.
"The recent detection of gravitational waves (GWs) from a system of binary neutron stars (BNS) in coincidence with electromagnetic observations has launched a new era of multimessenger astrophysics. In light of the complementary knowledge to be gained through simultaneous observations, BNS mergers are one of the main targets for terrestrial GW interferometric detectors. These observations may prove critical in understanding the equation of state (EOS) of the nuclear matter inside the neutron star core, which is still poorly constrained given current observations. Understanding the neutron star (NS) EOS is critical for binary parameter estimation, and will hopefully aid in the prediction and detection of additional GW signals for systems with varying NS masses. While configurations of binary neutron stars having mass ratios far from unity are of great interest because of their potential observational signatures, generating accurate initial data for such systems has historically proven to be difficult, and relatively limited work has been done to date in simulating unequal-mass BNS because of a variety of numerical difficulties. In this work, we have modified the publicly available LORENE binary initial data code to advance our ability to construct unequal-mass BNS initial data, and used our results to initiate dynamical evolutions of BNS mergers performed using the Einstein Toolkit. We have investigated the quality of the initial data produced by our modified version of LORENE by evaluating a number of metrics, particularly the conservation of the Hamiltonian constraint when data are interpolated onto a grid for use in dynamical simulations. Here we discuss the process by which we generate initial data and use it for launching dynamical simulations, as well as our analysis of the dynamics of the merger for varying mass ratios and different EOSs represented as simple polytropes and piecewise polytropes. In particular, we analyze the relationship between the BNS mass ratio, EOS, and the ejected mass during the merger, and classify the fate of the merger remnant produced in each case."--Abstract.
This book provides a concise introduction to the physics of gravitational waves. It is aimed at graduate-level students and PhD scholars. Ever since the discovery of gravitational waves in 2016, gravitational wave astronomy has been adding to our understanding of the universe. Gravitational waves have been detected in the past few years from several transient events such as merging stellar-mass black holes, binary neutron stars, etc. These waves have frequencies in a band ranging from a few hundred hertz to around a kilohertz to which LIGO type instruments are sensitive. LISA will be sensitive to much lower range of frequencies from SMBH mergers. Apart from these cataclysmic burst events, there are innumerable sources of radiation which are continuously emitting gravitational waves of all frequencies. These include a whole mass range of compact binary and isolated compact objects and close planetary stellar entities. This book discusses the gravitational wave background produced in typical frequency ranges from such sources emitting over a Hubble time and the fluctuations in the h values measured in the usual devices. Also discussed are the high-frequency thermal background gravitational radiation from hot stellar interiors and newly formed compact objects. The reader will also learn how gravitational waves provide a testing tool for various theories of gravity, i.e. general relativity and extended theories of gravity, and will be the definitive test for general relativity.
Gravitational waves were first predicted by Albert Einstein in 1916, a year after the development of his new theory of gravitation known as the general theory of relativity. This theory established gravitation as the curvature of space-time produced by matter and energy. To be discernible even to the most sensitive instruments on Earth, the waves have to be produced by immensely massive objects like black holes and neutron stars which are rotating around each other, or in the extreme situations which prevail in the very early ages of the Universe. This book presents the story of the prediction of gravitational waves by Albert Einstein, the early attempts to detect the waves, the development of the LIGO detector, the first detection in 2016, the subsequent detections and their implications. All concepts are described in some detail, without the use of any mathematics and advanced physics which are needed for a full understanding of the subject. The book also contains description of electromagnetism, Einstein’s special theory and general theory of relativity, white dwarfs, neutron stars and black holes and other concepts which are needed for understanding gravitational waves and their effects. Also described are the LIGO detectors and the cutting edge technology that goes into building them, and the extremely accurate measurements that are needed to detect gravitational waves. The book covers these ideas in a simple and lucid fashion which should be accessible to all interested readers. The first detection of gravitational waves was given a lot of space in the print and electronic media. So, the curiosity of the non-technical audience has been aroused about what gravitational waves really are and why they are so important. This book seeks to answer such questions.
This book contains a set of articles based on a session of the annual meeting of the American Association for the Advancement of Science held in San Francisco in February, 1974. The reason for the meeting arose from the need to communicate to the largest possible scientific community the dramatic advances which have been made in recent years in the understanding of collapsed objects: neutron stars and black holes. Thanks to an unprecedented resonance between X-ray, y-ray, radio and optical astronomy and important new theoretical developments in relativistic astro physics, a new deep understanding has been acquired of the physical processes oc curring in the late stages of evolution of stars. This knowledge may be one of the greatest conquests of man's understanding of nature in this century. This book aims to give an essential and up-to-date view in this field. The analysis of the physics and astrophysics of neutron stars and black holes is here attacked from both theoretical and experimental points of view. In the experimental field we range from the reviews and catalogues of galactic X-ray sources (R. Gursky and E. Schreier) and pulsars (E. Groth) to the observations of the optical counter part of X-ray sources (P. Boynton) to finally the recently discovered gamma-ray bursts (I. Strong) and pulse astronomy R. B. Partridge).
The remarkable story of how humankind discovered gravitational waves, chronicled with unparalleled historical and scientific vision. In 2016, the LIGO and Virgo Collaborations made headlines when they announced the detection of gravitational waves—a century after Albert Einstein first predicted their existence with his general theory of relativity. With unprecedented perspective as physicists at the forefront of this discovery, Mario Díaz, Gabriela González, and Jorge Pullin provide a comprehensive and accessible account of the quest to find gravitational waves, their controversial history, and the efforts that culminated with their detection and a Nobel Prize in Physics. The Sounds of the Cosmos vividly narrates contributions from the ancient Greeks through Einstein, in addition to the breakthroughs of the twentieth and twenty-first centuries, including the discovery of the Hulse-Taylor binary star system (the first of its kind ever observed) and the technology behind gravitational wave detectors. The authors' fusion of meticulous research and accessible prose makes this book an indispensable resource for the scientifically curious, lending astonishing new context to the revelation that we can “hear” the cosmos through gravitational waves. Written with exceptional historical and conceptual insight, this is a definitive and dazzling journey through “the eternal quest of humankind to understand the universe.”