Download Free Graphene Oxide In Enhancing Energy Storage Devices Book in PDF and EPUB Free Download. You can read online Graphene Oxide In Enhancing Energy Storage Devices and write the review.

The world is filled with electronics devices that use batteries and supercapacitors, such as laptops, cellphones, and cameras, creating the need for the efficient and effective production of good energy storage devices. The depletion of fossil fuels demands alternative sources of energy, which prompted the creation of solar cell (PV) technologies and fuel cells. The introduction of graphene oxides to these technologies help improve the performance of various energy storage and conversion devices. This book provides a broad review of graphene oxide synthesis and applications in various energy storage devices. The chapters explore various fundamental principles and the foundations of different energy conversion and storage devices with respect to their advancement due to emergence of graphene oxide, such as supercapacitors, batteries and fuel cells. This book will enable research towards improving the performance of various energy storage devices using graphene oxides and will be a valuable reference for researchers and scientists working across physics, engineering, and chemistry on different types of graphene oxide-based energy storage and conversion devices. Features Edited by established authorities in the field, with chapter contributions from subject area specialists. Provides a comprehensive review of the field. Up to date with the latest developments and cutting-edge research.
The book Materials for Sustainable Energy Storage Devices at the Nanoscale anticipates covering all electrochemical energy storage devices such as supercapacitors, lithium-ion batteries (LIBs), and fuel cells, transformation and enhancement materials for solar cells, photocatalysis, etc. The focal objective of the book is to deliver stunning and current information to the materials application at nanoscale to researchers and scientists in our contemporary time towardthe enhancement of energy conversion and storage devices. However, the contents of the proposed book, Materials for Sustainable Energy Storage at the Nanoscale, will cover various fundamental principles and wide knowledge of different energy conversion and storage devices with respect to their advancement due to the emergence of nanoscale materials for sustainable storage devices. This book is targeted to be award-winning as well as a reference book for researchers and scientists working on different types of nanoscale materials-based energy storage and conversion devices. Features Comprehensive overview of energy storage devices, an important field of interest for researchers worldwide Explores the importance and growing impact of batteries and supercapacitors Emphasizes the fundamental theories, electrochemical mechanism, and its computational view point and discusses recent developments in electrode designing based on nanomaterials, separators, and fabrication of advanced devices and their performances Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He earned a PhD in Physics and Astronomy from the University of Nigeria, Nsukka. His research focused on several areas of Materials Science, from synthesis and characterizations of particles and thin-film materials through chemical routes with emphasis on energy applications. For the last 15 years, he has been working on energy conversion and storage (cathodes, anodes, supercapacitors, solar cells, among others), including novel methods of synthesis, characterization and evaluation of the electrochemical and optical properties. He has published about 180 papers in various international journals and given over 50 talks at various conferences. His h-index is 21 with over 1500 citations and he has served as reviewer for several high impact journals and as an editorial board member. Dr. M.Anusuya, M.Sc., M.Phil., B.Ed., PhD is specialized in Material science, Thin Film Technology, Nano Science, and Crystallography. She is working as a Registrar of Indra Ganesan Group of Institutions, Trichy, Tamilnadu, India. Earlier to this, she served as a Vice-Principal at Trichy Engineering College, Trichy, Tamilnadu, India.. Being an administrator and teacher, with more than 25 years’ experience, for her perpetual excellence in academics she has been recognized with many awards. She has received over 45 awards in Academic and Social Activity. She has published more than 30 research papers in National and International journals, 7 chapters in edited books, 5 patents, presented 50 papers in the conferences and organized more than 200 webinars, both national and internationally. Dr Assumpta C. Nwanya is a Lecturer and a FLAIR (Future Leaders - African Independent Research) Scholar at the Department of Physics and Astronomy, University of Nigeria, Nsukka. She obtained her PhD in 2017 (University of Nigeria, Nsukka) with specialisation in the synthesis of nanostructured materials for applications in photovoltaics and electrochemical energy storage (batteries and supercapacitors) as well as for sensing. She was a Postdoctoral Fellow under the UNESCO-University of South Africa (UNISA) Africa Chair in Nanoscience and Nanotechnology (2018-2020). She is a research Affiliate with the SensorLab, University of the Western Cape Sensor Laboratories, Cape Town, South Africa. Dr Nwanya is a very active researcher and has published more than 85 scientific articles in high impact journals and has a Google Scholar’s H-index of 24 and 1475 citations.
Suitable for readers from broad backgrounds, Graphene: Energy Storage and Conversion Applications describes the fundamentals and cutting-edge applications of graphene-based materials for energy storage and conversion systems. It provides an overview of recent advancements in specific energy technologies, such as lithium ion batteries, supercapacitors, fuel cells, solar cells, lithium sulfur batteries, and lithium air batteries. It also considers the outlook of industrial applications in the near future. Offering a brief introduction to the major synthesis methods of graphene, the text details the latest academic and commercial research and developments, covering all potential avenues for graphene’s use in energy-related areas.
Materials for Energy Storage offers a combinatorial understanding of materials science and electrochemistry in electrochemical energy storage devices with a holistic overview of the status, research gaps, and future opportunities. Rooted in a profound understanding of contemporary energy utilization, aligned with the sustainable development goals, this book delves deep into the several device chemistries, impact of nanomaterials, and critical factors related to the device performance. It discusses electrode-electrolyte interaction, device fabrication, and commercial aspects. This book will offer value to the graduate and postgraduate students, researchers, and industry professionals related to materials science and energy technology.
Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices provides a detailed overview of advances and challenges in the development of 2D materials for use in energy storage devices. It offers deep insight into the synthesis, characterization, and application of different 2D materials and their heterostructures in a variety of energy storage devices, focusing on new phenomena and enhanced electrochemistry. This book: Introduces 2D materials, synthesis methods, and characterization techniques Discusses application in a wide range of batteries and supercapacitors Offers perspectives on future investigations necessary to overcome existing challenges This comprehensive reference is written to guide researchers and engineers working to advance the technology of energy-efficient energy storage devices.
Energy storage devices are considered to be an important field of interest for researchers worldwide. Batteries and supercapacitors are therefore extensively studied and progressively evolving. The book not only emphasizes the fundamental theories, electrochemical mechanism and its computational view point, but also discusses recent developments in electrode designing based on nanomaterials, separators, fabrication of advanced devices and their performances.
This book gives a comprehensive overview of graphene oxides (GO) from atomic structures and fundamental properties to technological applications. Atomic structural models, electronic properties, mechanical properties, optical properties, and functionalizing and compositing of GO are illustrated. Moreover, the excellent physical and chemical properties offer GO promising applications in electronic nanodevices, chemical sensors and catalyst, energy storage, and biotechnology, which are also presented in this book. Therefore, this book is of interest to researchers in physics, chemistry, materials science, and nanoscience.
This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: • Edited by established authorities in the field, with chapter contributions from subject area specialists • Provides a comprehensive review of field • Up to date with the latest developments and research