Download Free Graphene From Natural Sources Book in PDF and EPUB Free Download. You can read online Graphene From Natural Sources and write the review.

This book examines the synthesis of graphene obtained from different natural raw materials and waste products as a low-cost, environmentally friendly alternative that delivers a quality final product. Expert researchers review potential sources of natural raw materials and waste products, methods or characterization, graphene synthesis considerations, and important applications. FEATURES Explores the different approaches to the synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) from natural and industrial carbonaceous wastes Outlines the modification and characterization methods of GO and rGO Addresses the characterization methods of GO and rGO Details applications of GO and rGO created from natural sources Graphene is a multidisciplinary material with applications in almost every sector of science and engineering. Graphene from Natural Sources: Synthesis, Characterization, and Applications is a noteworthy reference for material scientists and engineers in academia and industry interested in reducing costs and employing green synthesis methods in their work.
• Covers the fabrication of graphene-silicon and graphene-silicon nanowire arrays (SiNWAs) Schottky junction near infrared photodetectors (NIRPDs). • Includes details on the applications of graphene thin film for lithium ion batteries.
From a chemistry aspect, graphene is the extrapolated extreme of condensed polycyclic hydrocarbon molecules to infinite size. Here, the concept on aromaticity which organic chemists utilize is applicable. Interesting issues appearing between physics and chemistry are pronounced in nano-sized graphene (nanographene), as we recognize the importance of the shape of nanographene in understanding its electronic structure. In this book, the fundamental issues on the electronic, magnetic, and chemical properties of condensed polycyclic hyodrocarbon molecules, nanographene and graphene are comprehensively discussed.
This book provides basic coverage of the fundamentals and principles of green chemistry as it applies to chemical analysis. The main goal of Green Analytical Chemistry is to avoid or reduce the undesirable environmental side effects of chemical analysis, while preserving the classic analytical parameters of accuracy, sensitivity, selectivity, and precision. The authors review the main strategies for greening analytical methods, concentrating on minimizing sample preparation and handling, reducing solvent and reagent consumption, reducing energy consumption, minimizing of waste, operator safety and the economic savings that this approach offers. Suggestions are made to educators and editors to standardize terminology in order to facilitate the identification of analytical studies on green alternatives in the literature because there is not a wide and generalized use of a common term that can group efforts to prevent waste, avoid the use of potentially toxic reagents or solvents and those involving the decontamination of wastes. - provides environmentally-friendly alternatives to established analytical practice - focuses on the cost-saving opportunities offered - emphasis on laboratory personnel safety
This book ''Recent Advances in Graphene Research'' provides a state-of-the-art report of the knowledge accumulated in graphene research. It contains 12 chapters divided into three sections. Section 1 ''Fundamentals of Graphene'' deals with quantum hall effect in graphene, electronic properties of carbon nanostructures and spectral statistics of graphene nanoflakes. In Section 2 ''Graphene Synthesis,'' the optimized synthesis procedures of graphene and its derivatives are presented. The application of graphene and its nanostructured-based materials for energy storage, conservation and other extensive applications are described in Section 3 ''Application of Graphene and its Nanostructures''. We believe that this book offers broader prospective to the readers in the recent advances in graphene research, starting from fundamental science to application.
What if you discovered an infinitesimally thin material capable of conducting electricity, able to suspend millions of times its own weight, and yet porous enough to filter the murkiest water? And what if this incredible substance is created from the same element that fills the common pencil? That's graphene--a flat, two-dimensional, carbon-based molecule with a single sheet measuring only one atom thick. In this layperson's introduction to this revolutionary substance, a physicist and a chemist explain how graphene was developed, discuss the problems in scaling up production for large-scale commercial use, and forecast the potentially transformative effects of incorporating graphene into everyday life. Recent research developments include adding graphene to Silly Putty to make extremely sensitive and malleable medical sensors and compressing and fusing flakes of graphene to create a three-dimensional material that's ten times stronger than steel. This widely adaptable substance promises to change the way we interact with smartphones, laptops, information storage, and even condoms. It may also enable significant improvements to air purification, water filtration technologies, and drug delivery. This entertaining and widely accessible book offers a fascinating look into one of the most exciting developments in materials science in recent decades.
MXene, a two-dimensional (2D) transition metal carbide, nitride, and carbonitride, was discovered in 2011. MXene has great potential as a cocatalyst in the field of photocatalysis due to its unique properties and structure. MXene-Based Photocatalysts: Fabrication and Applications introduces readers to the fundamentals, preparation, microstructure characterization, and a variety of applications of MXene-based photocatalysts. The book is a comprehensive reference for MXene materials and provides an overview of the current literature on MXene-based photocatalysts. FEATURES Discusses preparation methods of MXenes Describes the morphology and microstructure of MXenes Offers strategies for fabricating MXene-based photocatalysts Details the reaction mechanism of MXene-based photocatalysts Covers applications in photocatalytic water-splitting, photocatalytic CO2 reduction, photocatalytic degradation, photocatalytic nitrogen fixation, and photocatalytic H2O2 production This book serves as an invaluable guide for advanced students, industry professionals, professors, and researchers in the field of materials science and engineering, photocatalysis, energy, and environmental applications.
Due to its unique properties, graphene oxide has become one of the most studied materials of the last decade and a great variety of applications have been reported in areas such as sensors, catalysis and biomedical applications. This comprehensive volume systematically describes the fundamental aspects and applications of graphene oxide. The book is designed as an introduction to the topic, so each chapter begins with a discussion on fundamental concepts, then proceeds to review and summarize recent advances in the field. Divided into two parts, the first part covers fundamental aspects of graphene oxide and includes chapters on formation and chemical structure, characterization methods, reduction methods, rheology and optical properties of graphene oxide solutions. Part Two covers numerous graphene oxide applications including field effect transistors, transparent conductive films, sensors, energy harvesting and storage, membranes, composite materials, catalysis and biomedical applications. In each case the differences and advantages of graphene oxide over its non-oxidised counterpart are discussed. The book concludes with a chapter on the challenges of industrial-scale graphene oxide production. Graphene Oxide: Fundamentals and Applications is a valuable reference for academic researchers, and industry scientists interested in graphene oxide, graphene and other carbon materials.
This book comprises interdisciplinary topics including consolidating research activities in all experimental and theoretical aspects of natural advanced materials in the fields of science, engineering, and medicine including structure, synthesis, processing, physico-chemical properties, and applications. The book covers formulation for natural and organic cosmetics, CO2 sequestration, drug delivery systems, biosensors, and other related topics. In addition, case studies including some data are presented that demonstrate the growing interest and cost benefits of biomaterials. The main features of the book are: It discusses the properties and applications of materials from natural sources from an environmental and biomedical engineering perspective. It explores properties of natural materials used in drug delivery, biofuel, adsorbents, waste water treatment, cosmetics, and so forth. It includes studies on recent and emerging biomaterials. It details applications of natural materials in varied areas. It introduces the structure and mechanisms of self-healing material, biomaterial, biofuel, polymers, and adsorbents. This book is aimed at graduate students and researchers in chemical, environmental, and natural resource engineering.
All set to become the standard reference on the topic, this book covers the most important procedures for chemical functionalization, making it an indispensable resource for all chemists, physicists, materials scientists and engineers entering or already working in the field. Expert authors share their knowledge on a wide range of different functional groups, including organic functional groups, hydrogen, halogen, nanoparticles and polymers.