Download Free Graphene Bioelectronics Book in PDF and EPUB Free Download. You can read online Graphene Bioelectronics and write the review.

Graphene Bioelectronics covers the expending field of graphene biomaterials, a wide span of biotechnological breakthroughs, opportunities, possibilities and challenges. It is the first book that focuses entirely on graphene bioelectronics, covering the miniaturization of bioelectrode materials, bioelectrode interfaces, high-throughput biosensing platforms, and systemic approaches for the development of electrochemical biosensors and bioelectronics for biomedical and energy applications. The book also showcases key applications, including advanced security, forensics and environmental monitoring. Thus, the evolution of these scientific areas demands innovations in crosscutting disciplines, starting from fabrication to application. This book is an important reference resource for researchers and technologists in graphene bioelectronics—particularly those working in the area of harvest energy biotechnology—employing state-of-the-art bioelectrode materials techniques. Offers a comprehensive overview of state-of-art research on graphene bioelectronics and their potential applications Provides innovative fabrication strategies and utilization methodologies, which are frequently adopted in the graphene bioelectronics community Shows how graphene can be used to make more effective energy harvesting devices
Bioelectronics is emerging as a new area of research where electronics can selectively detect, record, and monitor physiological signals. This is a rapidly expanding area of medical research, that relies heavily on multidisciplinary technology development and cutting-edge research in chemical, biological, engineering, and physical science. This book provides extensive information on the (i) fundamental concepts of bioelectronics, (ii) materials for the developments of bioelectronics such as implantable electronics, self-powered devices, bioelectronic sensors, flexible bioelectronics, etc, and (iii) an overview of the trends and gathering of the latest bioelectronic progress. This book will broaden our knowledge about newer technologies and processes used in bioelectronics.
Graphene Based Biomolecular Electronic Devices outlines the fundamental concepts related to graphene and electronics, along with a description of various advanced and emerging applications of graphene-based bioelectronics. The book includes coverage of biosensors, energy storage devices such as biofuel cells, stretchable and flexible electronics, drug delivery systems, tissue engineering, and 3D printed graphene in bioelectronics. Taking an interdisciplinary approach, it explores the synergy produced due to charge transfer between biomolecules and graphene and will help the reader understand the promising bioelectronic applications of graphene-based devices. Graphene has applications in semiconductor electronics, replacing the use of traditional silicon-based devices due to its semi-metallic nature and tuneable energy band gap properties. The tuning of electron transfer with redox properties of biomolecules could potentially lead to the development of miniaturized bioelectronic devices. Thus, graphene, with its unique sensing characteristics, has emerged as an attractive material to produce biomolecular electronic devices. Explains advanced and emerging techniques for creating graphene-based bioelectronic devices Outlines the fundamental concepts of graphene-based bio-integrated systems Addresses the major challenges in creating graphene-based bioelectronic devices on a mass scale
The third volume in a series of handbooks on graphene research and applications Graphene is a valuable nanomaterial used in technology. This handbook is focused on Graphene-Like 2D Materials. The Handbook of Graphene, Volume 3 covers topics that include planar graphene superlattices; magnetic and optical properties of graphene materials with porous defects; and nanoelectronic application of graphyne and its structural derivatives.
Graphene Field-Effect Transistors In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications. Graphene Field-Effect Transistors includes information on: Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.
This book explains the fundamental characteristics and biofunctionality of graphene-based nanomaterials and provides up-to-date information on the full range of their biomedical applications. An introductory section gives an overview of the chemical composition and physical properties of graphene and its derivatives as well as their potential toxicity and biosafety. Detailed attention is then devoted to the potential of multifunctional graphene-based nanomaterials (MFGNs) to direct the differentiation of stem cells into specific lineages and induce tissue regeneration. Here, individual chapters address the application of MFGNs for the purposes of neurogenesis, osteo- and chrondrogenesis, myogenesis, and wound healing. Subsequent sections focus on the capability of MFGNs as agents for drug delivery, bioimaging, theranostics, and therapeutics as well as their effectiveness as biomimetic platforms for nanobiosensors, biochips, medical devices, and dental applications. The book will be essential reading for graduate students, scientists, and engineers in any of the biomedical research fields in which efforts are being made to utilize novel MFGN-incorporated composite materials and develop functional devices based on them.
Providing an eclectic snapshot of the current state of the art and future implications of the field, Nanomaterials, Polymers, and Devices: Materials Functionalization and Device Fabrication presents topics grouped into three categorical focuses: The synthesis, mechanism and functionalization of nanomaterials, such as carbon nanotubes, graphene, silica, and quantum dots Various functional devices which properties and structures are tailored with emphasis on nanofabrication. Among discussed are light emitting diodes, nanophotonic, nano-optical, and photovoltaic devices Nanoelectronic devices, which include semiconductor, nanotube and nanowire-based electronics, single-walled carbon-nanotube based nanoelectronics, as well as thin-film transistors
This book covers the recent advances in the development of bioelectronics systems and their potential application in future biomedical applications starting from system design to signal processing for physiological monitoring, to in situ biosensing. Advanced Bioelectronic Materials contributions from distinguished international scholars whose backgrounds mirror the multidisciplinary readership ranging from the biomedical sciences, biosensors and engineering communities with diverse backgrounds, interests and proficiency in academia and industry. The readers will benefit from the widespread coverage of the current literature, state-of-the-art overview of all facets of advanced bioelectronics materials ranging from real time monitoring, in situ diagnostics, in vivo imaging, image-guided therapeutics, biosensors, and translational biomedical devices and personalized monitoring.
Novel bio-electronic devices have a great potential for gathering biological information such as vital signs, cell behavior, protein and DNA molecule concentrations. The book presents concrete examples and shows that there are lots of sensing targets still remaining to be handled. Organic materials offer high sensitivity, flexibility and biocompatibility, and can be prepared by novel fabrication methods such as printing and coating at low cost. Part 1: OFET-based sensors. Part 2: Graphene-based materials and sensor device applications. Part 3: Applications of bio-sensing technologies, inkjet printing, tests for stroke monitoring, etc. Keywords: Organic Bioelectronics, Bioelectronic Devices, Biosensing Technologies, Organic Field Effect Transistor (OFET), OFET-based Sensor, Functional Bio-Interlayer OFET, Electrolyte-gated OFET, Organic Charge-Modulated FET, Graphene-based Materials, Carbon Nanotube, Carbon-based Biosensors, Inkjet Printing, Stroke Monitoring
Enzymes Conjugated to Graphene, Volume 609 in the Methods in Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters on Enzyme immobilization, Detection of Urea, Enzyme immobilization Enzyme immobilization, PAMAM dendrimer modified reduced graphene oxide post functionalized by horseradish peroxidase for biosensing H2O2, HRP immobilized for LEV detection, Enzyme immobilization, Graphene biocatalysts, Enzyme immobilization, Interactions, Enzyme immobilization, GQD, Enzyme Immobilization, and Enzyme immobilization on functionalized graphene oxide nanosheets. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods of Enzymology series Updated release includes the latest information on the enzymes conjugated to graphene