Download Free Graphene Based Molecularly Imprinted Polymer Composites And Composite Imprinted Ultrafiltration Membrane For Water Treatment Book in PDF and EPUB Free Download. You can read online Graphene Based Molecularly Imprinted Polymer Composites And Composite Imprinted Ultrafiltration Membrane For Water Treatment and write the review.

Understand functional coatings and their role in three key industries of the future Functional coatings play a huge range of roles in industries from automotive to aerospace to electronic and beyond. They offer protection, performance enhancement, corrosion resistance, self-cleaning properties, and more. Recent developments in the field have allowed for ever more precise optimization of functional coatings, with the result that demand for these key tools is only likely to increase. Functional Coatings for Biomedical, Energy, and Environmental Applications offers a comprehensive overview of these coatings and their applications in three explosively productive industries. A team of expert contributors provides chapters analyzing the latest developments in this growing area of production, with a particular focus on the dynamic relationship between functional coatings and their many applications. The result is an interdisciplinary text which will serve as an essential resource for researchers and industry professionals worldwide. Readers will also find: Analysis of functional coatings for dental implants, pool boilers, solar cells, and many more Detailed discussion of coating properties including superhydrophobicity, self-cleaning, controlled drug release, and more Key contributions to the great environmental challenges of the twenty-first century This book is a must-own for researchers in chemistry, engineering, energy, materials science, and more, as well as for industry professionals working with coating and other aspects of research and development in biomedical, energy, or environmental industries.
Water containing significant amounts of inorganic and organic contaminants can have serious environmental consequences and serious health implications when ingested. Contamination of Water: Health Risk Assessment and Treatment Strategies takes an interconnected look at the various pollutants, the source of contamination, the effects of contamination on aquatic ecosystems and human health, and what the potential mitigation strategies are. This book is organized into three sections. The first section examines the sources of potential contamination. This includes considering the current scenario of heavy metal and pesticide contamination in water as well as the regions impacted due to industrialization, mining, or urbanization. The second section goes on to discuss water contamination and health risks caused by toxic elements, radiological contaminants, microplastics and nanoparticles, and pharmaceutical and personal care products. This book concludes with a section exploring efficient low-cost treatment technologies and remediation strategies that remove toxic pollutants from water. Contamination of Water incorporates both theoretical and practical information that will be useful for researchers, professors, graduate students, and professionals working on water contamination, environmental and health impacts, and the management and treatment of water resources. - Provides practical case studies of various types and sources of contamination - Discusses inorganic and organic contaminants and their impact on human health - Evaluates effective water treatment and remediation technologies to remove toxins from water and minimize risk
Aquatic Contamination Authoritative resource presenting techniques and technologies to sustainably neutralize environmental contamination in aquatic plants, microorganisms, and more Two thirds of the Earth is covered with aquatic habitats that play a key role in stabilizing the global environment and providing a wide variety of services to increasing human needs. Nevertheless, anthropogenic activities are rapidly destroying the quality of both fresh and marine waters globally, due to excessive use of chemicals, fertilizers and pollution from suburban and industrial areas eventually making their way into the aquatic world. Aquatic Contamination: Tolerance and Bioremediation presents the broader spectrum of biological applicability of microbes with better understanding of cellular mechanisms for remediation of aquatic contaminants. The book also focuses on practices involved in molecular and genetic approaches, necessary to achieve targets of bioremediation and phytoremediation to solve global water contamination problems. Such approaches pave the way for the utilization of biological assets to design new, efficient, and environmentally sound remediation strategies by inculcating genomic techniques at cellular and molecular levels with model assessment. Aquatic Contamination provides a comprehensive background for readers interested in all perspectives of the contamination of aquatic environs. It covers various research aspects which are being carried out globally to understand simulation models in the assessment of xenobiotics, role of genomics, transgenic plants, and microbial enzymes for degradation and removal of toxic substances in aquatic environs. Key features include: Extensive coverage of interactions between plants, metals and microbes including the influence of biotic and abiotic factors Comprehensive discussion of the details of molecular mechanisms from assimilation to detoxification levels Exploration of the enzymatic approaches of potential plants acting as hyper-accumulators for contaminants in aquatic environs Details of sustainable tools such as transgenic plants for the manipulation of important functional microbial genes to achieve higher certainty of bioremediation Details of advances in tools and models like micro-arrays and simulation models for the complete assessment of xenobiotic compounds from cellular to degradation hierarchies Aquatic Contamination: Tolerance and Bioremediation will be substantially helpful to environmentalists, microbiologists, biotechnologists and scientists, providing essential information on various modern technologies for the remediation of contaminants in aquatic ecosystems.
Metal–organic frameworks are among the most promising novel materials. The concept of MOFs was first introduced in 1990. They were actually initially used in catalysis, gas separation, membranes, electrochemical sensors. Later on, they were introduced as SPE sorbents for PAHs (Polycyclic Aromatic Hydrocarbons) in environmental water samples, then the range expanded to the field of analytical chemistry, both in chromatographic separation and sample preparation, with great success in, e.g., SPE and SPME (Solid Phase Mico-extraction). Since then, the number of analytical applications implementing MOFs as sorbents in sorptive sample preparation approaches is increasing. Τhis is reinforced by the fact that, at least theoretically, an infinite number of structures can be designed and synthesized, thus making tuneability one of the most unique characteristics of MOF materials. Moreover, they have been designed in various shapes, such as columns, fibers, and films, so that they can meet more analytical challenges with improved analytical features.Their exceptional properties attracted the interest of analytical chemists who have taken advantage of the unique structures and properties and have already introduced them in several sample pretreatment techniques, such as solid phase extraction, dispersive SPE, magnetic solid phase extraction, solid phase microextraction, stir bar sorptive extraction, etc.
The book explains fundamental and advanced topics related to the field of membrane science including extensive coverage of material selection, preparation, characterization and applications of various membranes. Explores both preparation and wide range of applications for all possible membranes, contains an exclusive chapter on functionalized membranes and incorporation of stimuli responsive membranes in each type and includes exercise problems after each chapter It also discusses new membrane operations as membrane reactors and membrane contactors
Novel nanoscale materials are now an essential part of meeting the current and future needs for clean water, and are at the heart of the development of novel technologies to desalinate water. The unique properties of nanomaterials and their convergence with current treatment technologies present great opportunities to revolutionize water and wastewater treatment. Nanoscale Materials for Water Purification brings together sustainable solutions using novel nanomaterials to alleviate the physical effects of water scarcity. This book covers a wide range of nanomaterials, including noble metal nanoparticles, magnetic nanoparticles, dendrimers, bioactive nanoparticles, polysaccharidebased nanoparticles, nanocatalysts, and redox nanoparticles for water purification. Significant properties and characterization methods of nanomaterials such as surface morphology, mechanical properties, and adsorption capacities are also investigated - Explains how the unique properties of a range of nanomaterials makes them important water purification agents - Shows how the use of nanotechnology can help create cheaper, more reliable, less energy-intensive, more environmentally friendly water purification techniques - Includes case studies to show how nanotechnology has successfully been integrated into water purification system design
This book is divided into 5 sections starting with an historic perspective and fundamental aspects on the synthesis and recognition by imprinted polymers. The second section contains 8 up-to-date overview chapters on current approaches to molecular and ion imprinting. This is followed by two chapters on new material morphologies and in the last two sections various analytical applications of imprinted polymers are given, with the last four chapters devoted to the promising field of imprinted polymers in chemical sensors.The authors of this volume have widely different backgrounds; mainly polymer chemistry, organic chemistry, biochemistry and analytical chemistry, which means that this book has an interdisciplinary character and should appeal to a broad audience.
Separation of molecules present in organic solvents by membrane (nano)filtration has great potential in industries ranging from refining to fine chemical and pharmaceutical synthesis and is currently an area of intensive studies. This will be the first concise reference book offering a critical analysis on this topic. Nanofiltration, is a pressure driven membrane process used to remove solutes with molecular weight in the range of 200-1,000 g mol-1 typically from aqueous streams. A recent innovation is the extension of nanofiltration processes to organic solvents an emerging technology referred to as Organic Solvent Nanofiltration (OSN). Separation of molecules present in organic solvents by nanofiltration has great potential in various processes such as petroleum refining, fine chemical and pharmaceutical synthesis, catalyst recycle, enrichment of aromatics etc. This book summarizes the developments in the field of OSN. It describes materials and methods used for the preparation of organic solvent stable membranes. Various techniques for manufacturing of OSN membranes, their physico-chemical and performance related characterization and membrane transport mechanisms will be discussed and critically evaluated. A summary of the commercially available OSN membranes, their separation properties and manufacturers will also be presented. Finally a detailed overview of the OSN applications in various industrial and laboratory scale processes as well as their future prospective will be presented. Complete coverage of the field of organic Solvent Nanofiltration: theory and industrial applications Provides all you want to know in this fast developing application of membranes in industrial filtration and water purification Applications of membranes - summary of the existing applications and proposed new applications; review and critical analysis of the data on currently available OSN membranes. The benefit of this feature to the users is outlined in the comment of one referee: "I use these types of books as an instant reference, resource and fact checker when I am writing or researching topics in membrane technology. I also read the content carefully to keep myself at the state-of-the-art in the technology. R&D is an expensive and time consuming endeavor so anything learned from the literature is valuable when it helps to guide my efforts". Contains a large number of diagrams /figures (60 approx) which offer graphical explanations of the processes and the mechanisms underlying the processess provides practical and easy to understand examples of practical applications. The user can easily adapt these to his/her specific application Worked examples 15 (approx) Guide the reader through the various parameters, and show the reader the effect of these parameters in the overall design of the process Includes multimedia content, videos and active tables and diagrams Enable the user to add his/her own data and conditions and get results relevant to his/her situation. Tables (25 approx) Provides review and critical analysis of the data on currently available OSN membranes Glossary Summary of the main terms used in OSN
Metal Oxide Nanocomposites: Synthesis and Applications summarizes many of the recent research accomplishments in the area of metal oxide-based nanocomposites. This book focussing on the following topics: Nanocomposites preparation and characterization of metal oxide nanocomposites; synthesis of core/shell metal oxide nanocomposites; multilayer thin films; sequential assembly of nanocomposite materials; semiconducting polymer metal oxide nanocomposites; graphene-based metal and metal oxide nanocomposites; carbon nanotube–metal–oxide nanocomposites; silicon mixed oxide nanocomposites; gas semiconducting sensors based on metal oxide nanocomposites; metal ]organic framework nanocomposite for hydrogen production and nanocomposites application towards photovoltaic and photocatalytic.
3D Printing Technology for Water Treatment Applications provides a state-of-the-art presentation on the application of 3D printing technology in water treatment. The book discusses numerous processes and their scope for improvement through the use of 3D-printing technology, including pollutant separation from water and an overview of the advantages and disadvantages of different 3D printed technology over current technologies. In addition, the future outlook for device development using 3D printing water purification is explored. Finally, sustainability issues relating to 3D printing-based water purification processes are discussed, describing specific technologies such as 3D printed membranes. This book will serve as a vital resource for scientists, engineers and environmental professionals working in water treatment technologies. Takes an in-depth look at state-of-the-art water treatment methods Includes discussion of the application of 3D printed devices in areas such as water treatment, resource recovery and toxic ion removal Looks at current developments in the integration of adsorption technology with 3D printing technology