Download Free Graphene Based Energy Devices Book in PDF and EPUB Free Download. You can read online Graphene Based Energy Devices and write the review.

Graphene-Based Nanotechnologies for Energy and Environmental Applications explores how graphene-based materials are being used to make more efficient, reliable products and devices for energy storage and harvesting and environmental monitoring and purification. The book outlines the major sustainable, recyclable, and eco-friendly methods for using a range of graphene-based materials in innovative ways. It represents an important information source for materials scientists and engineers who want to learn more about the use of graphene-based nanomaterials to create the next generation of products and devices in energy and environmental science. Graphene-based nanotechnologies are at the heart of some of the most exciting developments in the fields of energy and environmental research. Graphene has exceptional properties, which are being used to create more effective products for electronic systems, environmental sensing devices, energy storage, electrode materials, fuel cell, novel nano-sorbents, membrane and photocatalytic degradation of environmental pollutants especially in the field of water and wastewater treatment. Covers synthesis, preparation and application of graphene based nanomaterials from different sources Demonstrates systematic approaches to the design, synthesis, characterization and applications of graphene-based nanocomposites in order to establish their important relationship with end-user applications Discusses the challenges in ensuring reliability and scalability of graphene-based nanotechnologies
This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic fuel cells, with chapters on graphene photovoltaics rounding off the book. Throughout, device architectures are not only discussed on a laboratory scale, but also ways for upscaling to an industrial level, including manufacturing processes and quality control. By bridging academic research and industrial development this is invaluable reading for materials scientists, physical chemists, electrochemists, solid state physicists, and those working in the electrotechnical industry.
2D Monoelements: Properties and Applications explores the challenges, research progress and future developments of the basic idea of two-dimensional monoelements, classifications, and application in field-effect transistors for sensing and biosensing. The thematic topics include investigations such as: Recent advances in phosphorene The diverse properties of two-dimensional antimonene, of graphene and its derivatives The molecular docking simulation study used to analyze the binding mechanisms of graphene oxide as a cancer drug carrier Metal-organic frameworks (MOFs)-derived carbon (graphene and carbon nanotubes) and MOF-carbon composite materials, with a special emphasis on the use of these nanostructures for energy storage devices (supercapacitors) Two-dimensional monoelements classification like graphene application in field-effect transistors for sensing and biosensing Graphene-based ternary materials as a supercapacitor electrode Rise of silicene and its applications in gas sensing
Suitable for readers from broad backgrounds, Graphene: Energy Storage and Conversion Applications describes the fundamentals and cutting-edge applications of graphene-based materials for energy storage and conversion systems. It provides an overview of recent advancements in specific energy technologies, such as lithium ion batteries, supercapacito
This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic fuel cells, with chapters on graphene photovoltaics rounding off the book. Throughout, device architectures are not only discussed on a laboratory scale, but also ways for upscaling to an industrial level, including manufacturing processes and quality control. By bridging academic research and industrial development this is invaluable reading for materials scientists, physical chemists, electrochemists, solid state physicists, and those working in the electrotechnical industry.
All set to become the standard reference on the topic, this book covers the most important procedures for chemical functionalization, making it an indispensable resource for all chemists, physicists, materials scientists and engineers entering or already working in the field. Expert authors share their knowledge on a wide range of different functional groups, including organic functional groups, hydrogen, halogen, nanoparticles and polymers.
Continuously studied since its discovery, graphene offers truly unique opportunities, because unlike most semiconductor systems, its 2D electronic states are not buried deep under the surface and it can be easily accessed directly by tunneling or by other local probes. An in-depth analysis of recent advances in graphene research, Graphene-Based Materials: Science and Technology discusses synthesis, properties, and their important applications in several fields. It examines methods for synthesis of graphene as well as surface characterization, properties, and application in biosensors and energy storage. The book begins with a brief review of the history of graphene and a discussion of its important properties. It then presents the different methods of graphene synthesis available and a brief overview of a few important characterization techniques that distinguishes graphene from its allotropes. The authors detail the applications of graphene in high-speed electronics, field-effect transistors, biosensors, gas-sensors, ultra-capacitors, photonics, optoelectronics, and drug delivery. They conclude with coverage of the toxicity properties of graphene and the future of graphene research. Written by experts with more than a decade of experience in nanotechnology research, the book incorporates the latest literature and findings in the field. Its emphasis on applications, especially biomedical/electrochemical and energy storage applications, sets it apart from other books on this topic. It provides those working in graphene and related materials a resource that helps initiate new thinking.
The world is filled with electronics devices that use batteries and supercapacitors, such as laptops, cellphones, and cameras, creating the need for the efficient and effective production of good energy storage devices. The depletion of fossil fuels demands alternative sources of energy, which prompted the creation of solar cell (PV) technologies and fuel cells. The introduction of graphene oxides to these technologies help improve the performance of various energy storage and conversion devices. This book provides a broad review of graphene oxide synthesis and applications in various energy storage devices. The chapters explore various fundamental principles and the foundations of different energy conversion and storage devices with respect to their advancement due to emergence of graphene oxide, such as supercapacitors, batteries and fuel cells. This book will enable research towards improving the performance of various energy storage devices using graphene oxides and will be a valuable reference for researchers and scientists working across physics, engineering, and chemistry on different types of graphene oxide-based energy storage and conversion devices. Features Edited by established authorities in the field, with chapter contributions from subject area specialists. Provides a comprehensive review of the field. Up to date with the latest developments and cutting-edge research.
Microsupercapacitors systematically guides the reader through the key materials, characterization techniques, performance factors and potential applications and benefits to society of this emerging electrical energy storage solution. The book reviews the technical challenges in scaling down supercapacitors, covering materials, performance, design and applications perspectives. Sections provide a fundamental understanding of microsupercapacitors and compare them to existing energy storage technologies. Final discussions consider the factors that impact performance, potential tactics to improve performance, barriers to implementation, emerging solutions to those barriers, and a future outlook. This book will be of particular interest to materials scientists and engineers working in academia, research and development. Provides a concise introduction of the fundamental science, related technological challenges, and solutions that microsupercapacitors can offer Compares microsupercapacitors with current technologies Reviews the applications of new strategies and the challenge of scaling down supercapacitors Covers the most relevant applications, including energy storage, energy harvesting, sensors and biomedical devices