Download Free Graphene Based Biomolecular Electronic Devices Book in PDF and EPUB Free Download. You can read online Graphene Based Biomolecular Electronic Devices and write the review.

Graphene Based Biomolecular Electronic Devices outlines the fundamental concepts related to graphene and electronics, along with a description of various advanced and emerging applications of graphene-based bioelectronics. The book includes coverage of biosensors, energy storage devices such as biofuel cells, stretchable and flexible electronics, drug delivery systems, tissue engineering, and 3D printed graphene in bioelectronics. Taking an interdisciplinary approach, it explores the synergy produced due to charge transfer between biomolecules and graphene and will help the reader understand the promising bioelectronic applications of graphene-based devices. Graphene has applications in semiconductor electronics, replacing the use of traditional silicon-based devices due to its semi-metallic nature and tuneable energy band gap properties. The tuning of electron transfer with redox properties of biomolecules could potentially lead to the development of miniaturized bioelectronic devices. Thus, graphene, with its unique sensing characteristics, has emerged as an attractive material to produce biomolecular electronic devices. - Explains advanced and emerging techniques for creating graphene-based bioelectronic devices - Outlines the fundamental concepts of graphene-based bio-integrated systems - Addresses the major challenges in creating graphene-based bioelectronic devices on a mass scale
This new edition of Graphene: Important Results and Applications provides a succinct overview of this innovative material, its history and development, applications, future prospects, and challenges. This 2nd edition has been updated and expanded to include all the latest developments. It covers production of graphene and its derivatives, commercial manufacture of graphene, research results and data on its properties, graphene dispersion, chemical modification, and cutting-edge applications. Eleven groups of production methods of graphene and its derivatives are discussed at length, providing how-to-do and what-to-expect analysis and comparison of potential properties of the resultant products. Also included are ideas for new product development and possible improvement of existing products, as is insight into the unique nature of graphene and its types, including morphology and thickness, mechanical properties, electrical conductivity, elastic properties of 2D and 3D structures, and more. - Provides an extensive account of the latest research in methods of production of graphene and its derivatives - Covers commercial manufacture, research results, property data, and cutting-edge applications - Discusses methods of incorporation in graphene products, chemical modifications, and projected future uses
Nanobiosensors for Bio-molecular Targeting presents the latest analytical methods for the detection of different substances in the range of small molecules to whole cells, exploring the advantages and disadvantages of each method. Biosensors combine the component of biological origin and physicochemical detector to show the presence of analytes in a given sample. The use of bionanotechnology has led to a significant advancement in the progression of nanobiosensors and has been effectively used for biomedical diagnosis. - Explains the detection techniques used by nanosensors, exploring the strengths and weaknesses of each for the detection of disease - Shows how biosensors are used to detect various types of biomolecules - Demonstrates how the use of nanomaterials makes biosensors both cheaper and more efficient
Biomolecular Electronics – the electrical control of biological phenomena – is a scientific challenge that, once fully realized, will find a wide range of applications from electronics and computing to medicine and therapeutic techniques.This new arena of biomolecular electronics is approached using familiar concepts from many areas such as electrochemistry, device electronics and some mechanisms of gene expression level control. Practical techniques are explored by which electrical and electronic means can be used to control biological reactions and processes. Also, the current and future applications for this new and expanding field are discussed.This book is aimed at scientists and engineers involved in both research and commercial applications across fields including bioelectronics, bionanotechnology, electrochemistry and nanomedicine – providing a state-of-the-art survey of what's going on at the boundary between biology and electronic technology at the micro- and nano- scales, along with a suggestive insight into future possible developments. - Demystifies the science and applications of electrically-driven biological reactions - Explains how the techniques of bioelectronics and electrochemistry can be deployed as biological control technologies - Provides applications information for diverse areas from bio-electrochemistry to electrical control of gene expression levels
Explore the Practical Applications and Promising Developments of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic
There are significant challenges in food analysis, problems with food contamination and authentication, and a worldwide need to ensure food safety. This book provides a description of antibody-based technologies used in food analysis. It focuses on key applications, outlining the approaches used, their advantages and limitations, and describes future areas for development. Chapters are written by experts in the field, critically examining each of the currently used methodologies and highlighting new evolving technologies, such as lab-on-chip and microfluidics-based devices and biosensors. Case studies demonstrating the utility of each of the methods described are included. Important introductory chapters cover sample preparation for analysis and statistical sampling necessary for quality control for verification of results. An overview chapter highlighting major analytical issues and areas that have specific requirements, e.g. food authentication, is provided. Researchers and scientists in the field who have to acquire, verify and use technologies for food analysis, food producers and processors, food safety and testing laboratories, and government agencies will all find this a useful addition to their library.
Computing systems are undergoing a transformation from logic-centric towards memory-centric architectures, where overall performance and energy efficiency at the system level are determined by the density, performance, functionality and efficiency of the memory, rather than the logic sub-system. This is driven by the requirements of data-intensive applications in artificial intelligence, autonomous systems, and edge computing. We are at an exciting time in the semiconductor industry where several innovative device and technology concepts are being developed to respond to these demands, and capture shares of the fast growing market for AI-related hardware. This special issue is devoted to highlighting, discussing and presenting the latest advancements in this area, drawing on the best work on emerging memory devices including magnetic, resistive, phase change, and other types of memory. The special issue is interested in work that presents concepts, ideas, and recent progress ranging from materials, to memory devices, physics of switching mechanisms, circuits, and system applications, as well as progress in modeling and design tools. Contributions that bridge across several of these layers are especially encouraged.
Volume 1:Biofabrication aims to produce artificially manufactured tissues and organs, potentially revolutionizing conventional paradigm of clinical practice in treating diseases and extending the life span and quality of human beings. In this volume, we invite notable experts in the field of biofabrication and biomanufacturing to summarize recent rapid progress in this field from multifaceted aspects covering biofabrication techniques and building materials such as scaffold and living cells. Specifically, a focus is placed on a variety of techniques derived from 3D bioprinting and bioassembly strategies, such as acoustic assembly and electrofabrication. Moreover, principles and strategies for choosing hydrogels and polymers for biofabrication are also heavily discussed. Overall, this book creates a good opportunity for undergraduate and postgraduate students as well as bioengineers and medical researchers who wish to gain a fundamental understanding of current status and future trends in biofabrication and biomanufacturing.Volume 2:Infertility has become a significant psychosocial burden affecting the lives of couples who cannot reproduce naturally. Advanced reproductive technologies (ARTs) are being developed to treat infertility. This handbook explores significant development of ARTs for fertility testing, selection of sperm, oocyte and embryo, reproductive monitors, automation in embryology, and fertility preservation. This volume provides a comprehensive overview of the myriad of emerging technologies and systems that are being utilized or will be utilized in near future in reproductive clinics. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in fertility and reproductive medicine.Volume 3:Healthcare industry has a notable paradigm transition from centralized care to the point-of-care (POC). During this metamorphosis, a number of new technologies and strategies have been adapted to the current practice, addressing the existing challenges in the fields of medicine and biology. All the efforts aim to improve the clinical management and the effectiveness and quality of care. In particular, diagnostics has pivotal roles in guiding clinical management for the most effective treatment to control and cure the disease. In contrast to the existing diagnostic strategies employing bulky-sized tools, expensive infrastructure, laborious protocols, and lengthy processing steps, the contribution of biosensors to current healthcare system, especially to diagnostics, is paramount. The unprecedented and admirable characteristics of biosensing strategies have expanded our knowledge on medicine and biology by harmonizing materials science, chemistry, physics, and engineering. We believe that biosensors applied to disease diagnostics will not only garner more attention in clinical research to decipher disease biology and mechanism, and also, stimulate innovative perspectives in artificial intelligence (AI) and internet of things (IoT) synergistically, thereby their more facile adaptation to daily-use. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in diagnostic technologies.
Due to its unique properties, graphene oxide has become one of the most studied materials of the last decade and a great variety of applications have been reported in areas such as sensors, catalysis and biomedical applications. This comprehensive volume systematically describes the fundamental aspects and applications of graphene oxide. The book is designed as an introduction to the topic, so each chapter begins with a discussion on fundamental concepts, then proceeds to review and summarize recent advances in the field. Divided into two parts, the first part covers fundamental aspects of graphene oxide and includes chapters on formation and chemical structure, characterization methods, reduction methods, rheology and optical properties of graphene oxide solutions. Part Two covers numerous graphene oxide applications including field effect transistors, transparent conductive films, sensors, energy harvesting and storage, membranes, composite materials, catalysis and biomedical applications. In each case the differences and advantages of graphene oxide over its non-oxidised counterpart are discussed. The book concludes with a chapter on the challenges of industrial-scale graphene oxide production. Graphene Oxide: Fundamentals and Applications is a valuable reference for academic researchers, and industry scientists interested in graphene oxide, graphene and other carbon materials.
Bioelectronics is emerging as a new area of research where electronics can selectively detect, record, and monitor physiological signals. This is a rapidly expanding area of medical research, that relies heavily on multidisciplinary technology development and cutting-edge research in chemical, biological, engineering, and physical science. This book provides extensive information on the (i) fundamental concepts of bioelectronics, (ii) materials for the developments of bioelectronics such as implantable electronics, self-powered devices, bioelectronic sensors, flexible bioelectronics, etc, and (iii) an overview of the trends and gathering of the latest bioelectronic progress. This book will broaden our knowledge about newer technologies and processes used in bioelectronics.