Download Free Graphene And Its Derivatives Book in PDF and EPUB Free Download. You can read online Graphene And Its Derivatives and write the review.

2D Functional Nanomaterials Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications In 2D Functional Nanomaterials: Synthesis, Characterization, and Applications, Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in the rational design and synthesis of 2D nanomaterials and their applications in semiconducting catalysts, biosensors, electrolysis, batteries, and solar cells. This interdisciplinary volume is a valuable resource for materials scientists, electrical engineers, nanoscientists, and solid-state physicists looking for up-to-date information on 2D heterojunction nanomaterials. The text summarizes the scientific contributions of international experts in the fabrication and application of 2D nanomaterials while discussing the importance and impact of 2D nanomaterials on future economic growth, novel manufacturing processes, and innovative products. Provides thorough coverage of graphene chemical derivatives synthesis and applications, including state-of-the-art developments and perspectives Describes 2D/2D graphene oxide-layered double hydroxide nanocomposites for immobilization of different radionuclides Covers 2D nanomaterials for biomedical applications and novel 2D nanomaterials for next-generation photodetectors Discusses applications of 2D nanomaterials for cancer therapy and recent trends ingraphene-latex nanocomposites Perfect for materials scientists, inorganic chemists, and electronics engineers, 2D Functional Nanomaterials: Synthesis, Characterization, and Applications is also an essential resource for solid-state physicists seeking accurate information on recent progress in two-dimensional heterojunction materials with energy conversion applications.
Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications explains how the functionalization technique is used to create graphene nanocomposites, also exploring its current uses in industrial applications. Graphene-based nanocomposites are one of the major advancements in polymer-based materials, thus the synthesis, nanoscale dimensions, high aspect ratio, mechanical, electrical and thermal properties of graphene and its derivative have all been major areas of research in the last decade. This important reference covers these updates and is a critical book for those working in the fields of materials processing and characterization.
Graphene and its derivatives are potential nanomaterials currently being widely investigated for diverse applications due to its exceptional mechanical, electrical, physical, and chemical properties. Examples of the applications include drug delivery, shape memory polymers, gene delivery, biosensor, tissue engineering, flexible electronic devices, antibacterial composites, photovoltaic devices, and physical sensors. Its excellent properties can be used to develop smart nanomaterials with enhanced properties for various advanced applications. There is no doubt that graphene-based nanomaterials are helping to develop next generation technologies with enhancing properties to change people's lifestyles. This book provides an overview of recent research and development of synthesis of graphene and its applications.
This book ''Recent Advances in Graphene Research'' provides a state-of-the-art report of the knowledge accumulated in graphene research. It contains 12 chapters divided into three sections. Section 1 ''Fundamentals of Graphene'' deals with quantum hall effect in graphene, electronic properties of carbon nanostructures and spectral statistics of graphene nanoflakes. In Section 2 ''Graphene Synthesis,'' the optimized synthesis procedures of graphene and its derivatives are presented. The application of graphene and its nanostructured-based materials for energy storage, conservation and other extensive applications are described in Section 3 ''Application of Graphene and its Nanostructures''. We believe that this book offers broader prospective to the readers in the recent advances in graphene research, starting from fundamental science to application.
All set to become the standard reference on the topic, this book covers the most important procedures for chemical functionalization, making it an indispensable resource for all chemists, physicists, materials scientists and engineers entering or already working in the field. Expert authors share their knowledge on a wide range of different functional groups, including organic functional groups, hydrogen, halogen, nanoparticles and polymers.
Synthesis, Technology and Applications of Carbon Nanomaterials explores the chemical properties of different classes of carbon nanomaterials and their major applications. As carbon nanomaterials are used for a variety of applications due to their versatile properties and characteristics, this book discusses recent advances in synthesis methods, characterization, and applications of 0D -3D dimensional carbon nanomaterials. It is an essential resource for readers focusing on carbon nanomaterials research. - Explores the chemical properties of different classes of carbon nanomaterials and their major applications - Discusses recent advances in synthesis methods, characterization, and applications of 0D -3D dimensional carbon nanomaterials
This book describes the essential characteristics of graphene, graphene oxide, reduced graphene oxide, and its nanocomposite and their applications in water and wastewater treatment and other environmental issues. The book introduces each topic in detail, discusses the basic principles, and analyzes and summarizes recent developments in the field. Various topics covered in this book include role of graphene as a potential material in photocatalytic organic pollutant degradation, water splitting applications, capacitive de-ionization techniques, air purification, gas adsorption, and decontamination of pathogenic microorganisms. Given the contents, the book is useful for students, researchers, and professionals working in the area environmental science and materials, especially graphene oxide, graphene, and graphene nanocomposite.
Nanoscale materials and structures have attracted great attention in recent years because of their unique physical and chemical properties and potential use in energy transport and conversion. This book puts the subject into context by first looking at current synthesis methods for nanomaterials, from the bottom-up and top-down methods, followed by enhanced energy conversion efficiency at the nanoscale and then specific applications e.g. photovoltaic cells and nanogenerators. This authoritative and comprehensive book will be of interest to both the existing scientific community in this field, as well as for new people who wish to enter it.
Due to its unique properties, graphene oxide has become one of the most studied materials of the last decade and a great variety of applications have been reported in areas such as sensors, catalysis and biomedical applications. This comprehensive volume systematically describes the fundamental aspects and applications of graphene oxide. The book is designed as an introduction to the topic, so each chapter begins with a discussion on fundamental concepts, then proceeds to review and summarize recent advances in the field. Divided into two parts, the first part covers fundamental aspects of graphene oxide and includes chapters on formation and chemical structure, characterization methods, reduction methods, rheology and optical properties of graphene oxide solutions. Part Two covers numerous graphene oxide applications including field effect transistors, transparent conductive films, sensors, energy harvesting and storage, membranes, composite materials, catalysis and biomedical applications. In each case the differences and advantages of graphene oxide over its non-oxidised counterpart are discussed. The book concludes with a chapter on the challenges of industrial-scale graphene oxide production. Graphene Oxide: Fundamentals and Applications is a valuable reference for academic researchers, and industry scientists interested in graphene oxide, graphene and other carbon materials.
This book summarizes the recent advances in carbon-related materials. It covers both experimental and theoretical approaches in graphene and nanocarbon materials, carbon composites and thin films, organic synthesis and physical chemistry, and characterization tools. Also discussed are cutting-edge applications for use in biochemical assays, dental implant surface modifi cations, pressure sensors, and more. This book is published in recognition of the Nobel Lectures delivered by Akira Suzuki, Emeritus Professor of Hokkaido University and Nobel Prize winner in Chemistry, 2010.