Download Free Graph Transformation Specifications And Nets Book in PDF and EPUB Free Download. You can read online Graph Transformation Specifications And Nets and write the review.

This volume pays tribute to the scientific achievements of Hartmut Ehrig, who passed away in March 2016. The contributions represent a selection from a symposium, held in October 2016 at TU Berlin, commemorating Hartmut’ s life and work as well as other invited papers in the areas he was active in. These areas include Graph Transformation, Model Transformation, Concurrency Theory, in particular Petri Nets, Algebraic Specification, and Category Theory in Computer Science.
This book constitutes the refereed proceedings of the 11th International Conference on Graph Transformation, ICGT 2018, held as part of STAF 2018, in Toulouse, France, in June 2018. The 9 full papers, 2 short papers and 1 keynote presented in this book were carefully reviewed and selected from 16 submissions. The papers deal with the following topics: graph languages; graph transformation formalisms; parallel independence and conflicts; and graph conditions and verification.​
This book constitutes the refereed proceedings of the 14th International Conference on Graph Transformation, ICGT 2021, which took place virtually during June 24-25, 2021. The 14 full papers and 2 tool papers presented in this book were carefully reviewed and selected from 26 submissions. They deal with the following topics: theoretical advances; application domains; and tool presentations.
ICGT 2002 was the ?rst International Conference on Graph Transformation following a series of six international workshops on graph grammars with - plications in computer science, held in Bad Honnef (1978), Osnabruc ̈ k (1982), Warrenton (1986), Bremen (1990), Williamsburg (1994), and Paderborn (1998). ICGT 2002 was held in Barcelona (Spain), October 7–12, 2002 under the a- pices of the European Association of Theoretical Computer Science (EATCS), the European Association of Software Science and Technology (EASST), and the IFIP Working Group 1.3, Foundations of Systems Speci?cation. The scope of the conference concerned graphical structures of various kinds (like graphs, diagrams, visual sentences and others) that are useful to describe complex structures and systems in a direct and intuitive way. These structures are often augmented by formalisms which add to the static description a further dimension, allowing for the modeling of the evolution of systems via all kinds of transformations of such graphical structures. The ?eld of Graph Transformation is concerned with the theory, applications, and implementation issues of such formalisms. The theory is strongly related to areas such as graph theory and graph - gorithms, formal language and parsing theory, the theory of concurrent and distributed systems, formal speci?cation and veri?cation, logic, and semantics.
This book constitutes the refereed proceedings of the 12th International Conference on Graph Transformation, ICGT 2019, held as part of STAF 2019, in Eindhoven, The Netherlands, in July2019. The 12 research papers and 1 tool paper presented in this book were carefully reviewed and selected from 22 submissions. The papers deal with the following topics: Theory, Analysis and Verification, Tools and Applications, and Transformation Rules Construction and Matching.
Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph transformations generalizes formal language theory based on strings and the theory of term rewriting based on trees. As a matter of fact, within the area of graph grammars, graph transformation is considered as a fundamental computation paradigm where computation includes specification, programming, and implementation. Over the last three decades, graph grammars have developed at a steady pace into a theoretically attractive and important-for-applications research field.Volume 3 of the indispensable Handbook of Graph Grammars and Computing by Graph Transformations presents the research on concurrency, parallelism, and distribution — important paradigms of modern computer science. The topics considered include semantics for concurrent systems, modeling of concurrency, mobile and coordinated systems, algebraic specifications, Petri nets, visual design of distributed systems, and distributed algorithms. The contributions have been written in a tutorial/survey style by the top experts.
Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others. The area of graph grammars and graph transformations generalizes formal language theory based on strings and the theory of term rewriting based on trees. As a matter of fact, within the area of graph grammars, graph transformation is considered a fundamental computation paradigm where computation includes specification, programming, and implementation. Over the last three decades, graph grammars have developed at a steady pace into a theoretically attractive and important-for-applications research field. Volume 3 of the 'indispensable Handbook of' Graph Grammars and Computing by Graph Transformations presents the research on concurrency, parallelism, and distribution -- important paradigms of modern science. The topics considered include semantics for concurrent systems, modeling of concurrency, mobile and coordinated systems, algebraic specifications, Petri nets, visual design of distributed systems, and distributed algorithms. The contributions have been written in a tutorial/survey style by the top experts.
This book constitutes the refereed proceedings of the 4th International Conference on Graph Transformations, ICGT 2008, held in Leicester, UK, in September 2008. The 27 revised full papers presented together with 5 tutorial and workshop papers and 3 invited lectures were carefully selected from 57 submissions. All current aspects in graph drawing are addressed including hypergraphs and termgraph rewriting, applications of graph transformation, execution of graph transformations, compositional systems, validation and verification, graph languages and special transformation concepts, as well as patterns and model transformations. In addition the volume contains 17 short papers of the ICGT 2008 Doctoral Symposium.
This book constitutes the refereed proceedings of the 9th International Conference on Graph Transformation, ICGT 2016, held as part of STAF 2016, in Vienna, Austria, in July 2016. The 14 papers presented in this were carefully reviewed and selected from 33 submissions. They were organized in topical sections named: foundations, tools and algorithms, queries, and applications. The book also contains one keynote paper in full paper length. The book is dedicated to Hartmut Ehrig, one of the fathers and most productive members of the Graph Transformation community, who passed away in 2016. An obituary is included in the front matter of the volume.
This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. It contains an introduction to classical graphs. Basic and advanced results are first shown for an abstract form of replacement systems and are then instantiated to several forms of graph and Petri net transformation systems. The book develops typed attributed graph transformation and contains a practical case study.