Download Free Granularity In Materials Science Book in PDF and EPUB Free Download. You can read online Granularity In Materials Science and write the review.

Granular materials are a special topic of recent research and are a milestone of science and technology. These materials are very simple: they are large conglomerations of discrete macroscopic particles. Granular materials have a broad area of development, which is growing rapidly day by day. Their impact on commercial applications and academia and education is huge. The basic points of this book are the important applications and properties of granular materials. For example, special mention is made of rheological points, shapes, and civil engineering aspects.
Granular materials are a special topic of recent research and are a milestone of science and technology. These materials are very simple: they are large conglomerations of discrete macroscopic particles. Granular materials have a broad area of development, which is growing rapidly day by day. Their impact on commercial applications and academia and education is huge. The basic points of this book are the important applications and properties of granular materials. For example, special mention is made of rheological points, shapes, and civil engineering aspects.
Information granules, as encountered in natural language, are implicit in nature. To make them fully operational so they can be effectively used to analyze and design intelligent systems, information granules need to be made explicit. An emerging discipline, granular computing focuses on formalizing information granules and unifying them to create a coherent methodological and developmental environment for intelligent system design and analysis. Granular Computing: Analysis and Design of Intelligent Systems presents the unified principles of granular computing along with its comprehensive algorithmic framework and design practices. Introduces the concepts of information granules, information granularity, and granular computing Presents the key formalisms of information granules Builds on the concepts of information granules with discussion of higher-order and higher-type information granules Discusses the operational concept of information granulation and degranulation by highlighting the essence of this tandem and its quantification in terms of the associated reconstruction error Examines the principle of justifiable granularity Stresses the need to look at information granularity as an important design asset that helps construct more realistic models of real-world systems or facilitate collaborative pursuits of system modeling Highlights the concepts, architectures, and design algorithms of granular models Explores application domains where granular computing and granular models play a visible role, including pattern recognition, time series, and decision making Written by an internationally renowned authority in the field, this innovative book introduces readers to granular computing as a new paradigm for the analysis and synthesis of intelligent systems. It is a valuable resource for those engaged in research and practical developments in computer, electrical, industrial, manufacturing, and biomedical engineering. Building from fundamentals, the book is also suitable for readers from nontechnical disciplines where information granules assume a visible position.
Information granules are fundamental conceptual entities facilitating perception of complex phenomena and contributing to the enhancement of human centricity in intelligent systems. The formal frameworks of information granules and information granulation comprise fuzzy sets, interval analysis, probability, rough sets, and shadowed sets, to name only a few representatives. Among current developments of Granular Computing, interesting options concern information granules of higher order and of higher type. The higher order information granularity is concerned with an effective formation of information granules over the space being originally constructed by information granules of lower order. This construct is directly associated with the concept of hierarchy of systems composed of successive processing layers characterized by the increasing levels of abstraction. This idea of layered, hierarchical realization of models of complex systems has gained a significant level of visibility in fuzzy modeling with the well-established concept of hierarchical fuzzy models where one strives to achieve a sound tradeoff between accuracy and a level of detail captured by the model and its level of interpretability. Higher type information granules emerge when the information granules themselves cannot be fully characterized in a purely numerical fashion but instead it becomes convenient to exploit their realization in the form of other types of information granules such as type-2 fuzzy sets, interval-valued fuzzy sets, or probabilistic fuzzy sets. Higher order and higher type of information granules constitute the focus of the studies on Granular Computing presented in this study. The book elaborates on sound methodologies of Granular Computing, algorithmic pursuits and an array of diverse applications and case studies in environmental studies, option price forecasting, and power engineering.
"Nanomaterials" is a special topic of recent research and is a milestone of nanoscience and nanotechnology. Nanoscale materials are a series of substances/compounds, in which at least one dimension has smaller size than 100 nm. Nanomaterials have a broad area of development, which is growing rapidly day by day. Their impact on commercial applications as well as on the respective academia and education is huge. The basic points of this book can be divided into synthesis of nanomaterials and their applications. For example, special mention is about metal-oxide nanostructures, nanocomposites, and polymeric nanomaterials. Also, synthesis, characterizations, various processes, fabrications and some promising applications are also developed and analyzed.
Over the past 5 years, the concept of big data has matured, data science has grown exponentially, and data architecture has become a standard part of organizational decision-making. Throughout all this change, the basic principles that shape the architecture of data have remained the same. There remains a need for people to take a look at the "bigger picture" and to understand where their data fit into the grand scheme of things. Data Architecture: A Primer for the Data Scientist, Second Edition addresses the larger architectural picture of how big data fits within the existing information infrastructure or data warehousing systems. This is an essential topic not only for data scientists, analysts, and managers but also for researchers and engineers who increasingly need to deal with large and complex sets of data. Until data are gathered and can be placed into an existing framework or architecture, they cannot be used to their full potential. Drawing upon years of practical experience and using numerous examples and case studies from across various industries, the authors seek to explain this larger picture into which big data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together. - New case studies include expanded coverage of textual management and analytics - New chapters on visualization and big data - Discussion of new visualizations of the end-state architecture
This book had its origins in a meeting between two (relatively) young particle technology researchers on Rehobeth Beach in Delaware in 1992 near the holiday house of Reg Davies (then Director of the Particle Science and Technology Research Center in Dupont). As we played in the sand, we shared an excitement for developments in particle technology, especially particle characterization, that would lead operations such as granulation to be placed on a sound scientific and engineering footing. The immediate outcome from this interaction was the development of new industry short courses in granulation and related topics which we taught together both in Australia and North America. This book follows closely the structure and approaches developed in these courses, particularly the emphasis on particle design in granulation, where the impact of both formulation properties and process variables on product attributes needs to be understood and quantified. The book has been a long time in the making. We have been actively preparing the book for at least five years. Although the chapters have relatively good bibliographies, this book is not a review of the field. Rather it is an attempt by the authors to present a comprehensive engineering approach to granulator design, scale up and operation. It is exciting for us to see the explosion of research interest around the world in this area in the last five to seven years. Some of the most recent work will have to find its way into the second edition.
This book addresses an intriguing question: are our decisions rational? It explains seemingly irrational human decision-making behavior by taking into account our limited ability to process information. It also shows with several examples that optimization under granularity restriction leads to observed human decision-making. Drawing on the Nobel-prize-winning studies by Kahneman and Tversky, researchers have found many examples of seemingly irrational decisions: e.g., we overestimate the probability of rare events. Our explanation is that since human abilities to process information are limited, we operate not with the exact values of relevant quantities, but with “granules” that contain these values. We show that optimization under such granularity indeed leads to observed human behavior. In particular, for the first time, we explain the mysterious empirical dependence of betting odds on actual probabilities. This book can be recommended to all students interested in human decision-making, to researchers whose work involves human decisions, and to practitioners who design and employ systems involving human decision-making —so that they can better utilize our ability to make decisions under uncertainty.
Focussing on the basic mechanics and underlying physics of granular material, Mechanics of Granular Matter starts with an introduction to contact mechanics of individual particles before moving on to a discussion of the structure of force chain networks and the influence on bulk mechanical properties of granular solids and granular flows. Furthermore, a preliminary multi scale framework is proposed for the nonlinear mechanics and strain localization in granular materials.
The Handbook of Software Aging and Rejuvenation provides a comprehensive overview of the subject, making it indispensable to graduate students as well as professionals in the field. It begins by introducing fundamental concepts, definitions, and the history of software aging and rejuvenation research, followed by methods, tools, and strategies that can be used to detect, analyze, and overcome software aging.