Download Free Gradient Modelling Book in PDF and EPUB Free Download. You can read online Gradient Modelling and write the review.

This series is dedicated to serving the growing community of scholars and practitioners concerned with the principles and applications of environmen tal management. Each volume will be a thorough treatment of a specific topic of importance for proper management practices. A fundamental objective ofthese books is to help the reader discern and implement man's stewardship of our environment and the world's renewable resources. For we must strive to understand the relationship between man and nature, act to bring harmony to it and nurture an environment that is both stable and productive. These objectives have often eluded us because the pursuit of other indi vidual and societal goals has diverted us from a course of living in balance with the environment. At times, therefore, the environmental manager may have to exert restrictive control, which is usually best applied to man, not nature. Attempts to alter or harness nature have often failed or backfired, as exemplified by the results of imprudent use of herbicides, fertilizers, water and other agents. Each book in this series will shed light on the fundamental and applied aspects of environmental management. It is hoped that each will help solve a practical and serious environmental problem.
This book provides a comprehensive introduction to numerical modeling of size effects in metal plasticity. The main classes of strain gradient plasticity formulations are described and efficiently implemented in the context of the finite element method. A robust numerical framework is presented and employed to investigate the role of strain gradients on structural integrity assessment. The results obtained reveal the need of incorporating the influence on geometrically necessary dislocations in the modeling of various damage mechanisms. Large gradients of plastic strain increase dislocation density, promoting strain hardening and elevating crack tip stresses. This stress elevation is quantified under both infinitesimal and finite deformation theories, rationalizing the experimental observation of cleavage fracture in the presence of significant plastic flow. Gradient-enhanced modeling of crack growth resistance, hydrogen diffusion and environmentally assisted cracking highlighted the relevance of an appropriate characterization of the mechanical response at the small scales involved in crack tip deformation. Particularly promising predictions are attained in the field of hydrogen embrittlement. The research has been conducted at the Universities of Cambridge, Oviedo, Luxembourg, and the Technical University of Denmark, in a collaborative effort to understand, model and optimize the mechanical response of engineering materials.
Over the past 50 years, strain gradient material theories have been developed for the continuum modeling of size effects in materials and structures in terms of their elasticity, plasticity and fracturing. This book puts forward a unifying perspective to combine existing theories involving the higher order gradient of the strain tensor, or of plastic strain. It begins by reviewing experimental findings on the existence (or non-existence) of size effects on the mechanics of materials. In turn, the book devises first, second and higher order strain gradient theories from general principles, and presents constitutive frameworks that satisfy thermodynamic requirements. The special case of strain gradient plasticity is then developed and illustrated via computational analyses of size effects on the plasticity of metals at small scales. In closing, the book explains the origin of gradient effects in the case of lattice structures by drawing on homogenization theory.
This book applies to the scientific area of electronic design automation (EDA) and addresses the automatic sizing of analog integrated circuits (ICs). Particularly, this book presents an approach to enhance a state-of-the-art layout-aware circuit-level optimizer (GENOM-POF), by embedding statistical knowledge from an automatically generated gradient model into the multi-objective multi-constraint optimization kernel based on the NSGA-II algorithm. The results showed allow the designer to explore the different trade-offs of the solution space, both through the achieved device sizes, or the respective layout solutions.
Gradient-Enhanced Continuum Plasticity provides an expansive review of gradient-enhanced continuum plasticity from the initial stage to current research trends in experimental, theoretical, computational and numerical investigations. Starting with an overview of continuum mechanics and classical plasticity, the book then delves into concise lessons covering basic principles and applications, such as outlining the use of the finite element method to solve problems with size effects, mesh sensitivity and high velocity impact loading. All major theories are explored, providing readers with a guide to understanding the various concepts of and differences between an array of gradient-enhanced continuum plasticity models. - Outlines the concepts of, and differences between, various gradient-enhanced continuum plasticity models - Provides guidance on problem-solving for size effects, mesh-sensitivity tests and thermo-mechanical coupling - Reviews experimental, numerical and theoretical issues in gradient-enhanced continuum plasticity - Describes micromechanical aspects from experimental observations
Die Simulation von Materialien gehört zu den interessantesten neuen Forschungsgebieten der Ingenieurwissenschaften. Dieser Band spricht alle wichtigen Aspekte des Themas an, von den mathematischen Grundlagen der Simulation über Anwendungen beim Design von Mikrostrukturen bis zur computergestützten Werkstoffauswahl und -entwicklung. Doktoranden und Praktiker aus Materialwissenschaft und Technik lernen, aus den existierenden Simulationsmethoden den für ihr Problem am besten geeigneten Ansatz auszuwählen.
This book presents a liber amicorum dedicated to Wolfgang H. Müller, and highlights recent advances in Prof. Müller’s major fields of research: continuum mechanics, generalized mechanics, thermodynamics, mechanochemistry, and geomechanics. Over 50 of Prof. Müller’s friends and colleagues contributed to this book, which commemorates his 60th birthday and was published in recognition of his outstanding contributions.
This book provides a review of the principles and methods of drainage with an emphasis on design. The whole field of drainage is covered, and although the book concentrates mainly on the practice in North America, Europe and Britain, the practice in developing countries is also included. The book is directed primarily at the graduate engineer entering professional practice, but will also provide a useful reference for more senior engineers and for those in adjunct professions. Chapter 1 outlines the necessity for drainage on a large or small scale, for rural and urban areas. As the drainage engineer must decide how much unwanted water there will be and when it will occur, the chapter discusses climatic types, prediction of rainfall, evapotranspiration effects, return periods (of design storms and runoff events), river flow and flood prediction, and various sensing systems for providing short term predictions of rainfall, runoff, streamflow and flood warning. Chapter 2 gives a thorough review of the properties of soil in the context of drainage design. The extensive mathematical theories which relate to the crucial area of soil water movement are outlined and due attention is paid to the growing importance of predicting soil water movement in partially saturated soils.
These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.