Download Free Gradient Enhanced Continuum Plasticity Book in PDF and EPUB Free Download. You can read online Gradient Enhanced Continuum Plasticity and write the review.

Gradient-Enhanced Continuum Plasticity provides an expansive review of gradient-enhanced continuum plasticity from the initial stage to current research trends in experimental, theoretical, computational and numerical investigations. Starting with an overview of continuum mechanics and classical plasticity, the book then delves into concise lessons covering basic principles and applications, such as outlining the use of the finite element method to solve problems with size effects, mesh sensitivity and high velocity impact loading. All major theories are explored, providing readers with a guide to understanding the various concepts of and differences between an array of gradient-enhanced continuum plasticity models. - Outlines the concepts of, and differences between, various gradient-enhanced continuum plasticity models - Provides guidance on problem-solving for size effects, mesh-sensitivity tests and thermo-mechanical coupling - Reviews experimental, numerical and theoretical issues in gradient-enhanced continuum plasticity - Describes micromechanical aspects from experimental observations
Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental data. Key to developing such models-and to meeting many other challenges in the field- is a firm grasp of the principles of continuum mechanics and how they apply to the formulation of plasticity theory. Also critical is understanding the experimental aspects of plasticity and material anisotropy. Integrating the traditionally separate subjects of continuum mechanics and plasticity, this book builds understanding in all of those areas. Part I provides systematic, comprehensive coverage of continuum mechanics, from a review of Carteisian tensors to the relevant conservation laws and constitutive equation. Part II offers an exhaustive presentation of the continuum theory of plasticity. This includes a unique treatment of the experimental aspects of plasticity, covers anisotropic plasticity, and incorporates recent research results related to the endochronic theory of plasticity obtained by the author and his colleagues. By bringing all of these together in one book, Continuum Mechanics and Plasticity facilitates the learning of solid mechanics. Its readers will be well prepared for pursuing either research related to the mechanical behavior of engineering materials or developmental work in engineering analysis and design.
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Elastodynamics, Volume II: Linear Theory is a continuation of Volume I and discusses the dynamical theory of linear isotropic elasticity. The volume deals with the fundamental theorems regarding elastodynamics and the different mathematical methods of solution and their employment in one, two, and three dimensions. The text outlines the fundamentals of linear elastodynamics and explains basic equations, displacement formulation, stress formulation, and the uniqueness theorem of elastodynamics. The book also investigates elastodynamic problems involving one-space dimension in governing boundaries, equations, and initial conditions. The book then compares two-dimensional problems as being subject to more precise mathematical analysis compared to three-dimensional situations by using scalar wave equations. The text then analyzes elastodynamic problems in three space dimensions when the solution depends on the condition of separability of the vector wave equation and the satisfaction of the boundary conditions. The diffraction of elastic waves is also described using two approaches: the integral equation method or the Eigen function technique. The book can prove valuable to researchers and practitioners whose work involves advanced statistics, general physics, and thermodynamics.
Born out of 15 years of courses and lectures on continuum mechanics, nonlinear mechanics, continuum thermodynamics, viscoelasticity, plasticity, crystal plasticity, and thermodynamic plasticity, The Mechanical and Thermodynamical Theory of Plasticity represents one of the most extensive and in-depth treatises on the mechanical and thermodynamical aspects of plastic and visicoplastic flow. Suitable for student readers and experts alike, it offers a clear and comprehensive presentation of multi-dimensional continuum thermodynamics to both aid in initial understanding and introduce and explore advanced topics. Covering a wide range of foundational subjects and presenting unique insights into the unification of disparate theories and practices, this book offers an extensive number of problems, figures, and examples to help the reader grasp the subject from many levels. Starting from one-dimensional axial motion in bars, the book builds a clear understanding of mechanics and continuum thermodynamics during plastic flow. This approach makes it accessible and applicable for a varied audience, including students and experts from engineering mechanics, mechanical engineering, civil engineering, and materials science.
This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.
The first theme concerns the plastic buckling of structures in the spirit of Hill’s classical approach. Non-bifurcation and stability criteria are introduced and post-bifurcation analysis performed by asymptotic development method in relation with Hutchinson’s work. Some recent results on the generalized standard model are given and their connection to Hill’s general formulation is presented. Instability phenomena of inelastic flow processes such as strain localization and necking are discussed. The second theme concerns stability and bifurcation problems in internally damaged or cracked colids. In brittle fracture or brittle damage, the evolution law of crack lengths or damage parameters is time-independent like in plasticity and leads to a similar mathematical description of the quasi-static evolution. Stability and non-bifurcation criteria in the sense of Hill can be again obtained from the discussion of the rate response.
Over the past 50 years, strain gradient material theories have been developed for the continuum modeling of size effects in materials and structures in terms of their elasticity, plasticity and fracturing. This book puts forward a unifying perspective to combine existing theories involving the higher order gradient of the strain tensor, or of plastic strain. It begins by reviewing experimental findings on the existence (or non-existence) of size effects on the mechanics of materials. In turn, the book devises first, second and higher order strain gradient theories from general principles, and presents constitutive frameworks that satisfy thermodynamic requirements. The special case of strain gradient plasticity is then developed and illustrated via computational analyses of size effects on the plasticity of metals at small scales. In closing, the book explains the origin of gradient effects in the case of lattice structures by drawing on homogenization theory.
Plate and Shell Structures: Selected Analytical and Finite Element Solutions Maria Radwañska, Anna Stankiewicz, Adam Wosatko, Jerzy Pamin Cracow University of Technology, Poland Comprehensively covers the fundamental theory and analytical and numerical solutions for different types of plate and shell structures Plate and Shell Structures: Selected Analytical and Finite Element Solutions not only provides the theoretical formulation of fundamental problems of mechanics of plates and shells, but also several examples of analytical and numerical solutions for different types of shell structures. The book contains advanced aspects related to stability analysis and a brief description of modern finite element formulations for plates and shells, including the discussion of mixed/hybrid models and locking phenomena. Key features: 52 example problems solved and illustrated by more than 200 figures, including 30 plots of finite element simulation results. Contents based on many years of research and teaching the mechanics of plates and shells to students of civil engineering and professional engineers. Provides the basis of an intermediate-level course on computational mechanics of shell structures. The book is essential reading for engineering students, university teachers, practitioners and researchers interested in the mechanics of plates and shells, as well as developers testing new simulation software.
This book examines the experimental and theoretical aspects of bifurcation analysis as applied to geomechanics. Coverage includes basic continuum mechanics for dry and fluid unfiltrated porous media, bifurcation and stability analyses applied to layered geological media and granular materials, and theories for generalized continua as applied to materials with microstructure and in relation to strain localization phenomena.