Download Free Goldbach Conjecture 2nd Edition Book in PDF and EPUB Free Download. You can read online Goldbach Conjecture 2nd Edition and write the review.

This book provides a detailed description of a most important unsolved mathematical problem — the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture.
This book provides a detailed description of a most important unsolved mathematical problem OCo the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920''s. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."
Essays in the Foundations of Mathematics, 2nd ed. By: Russell Connor The content of this second edition is identical to that of the first, except for two additional essays and an elaboration in Richard’s paradox. The first of these, which would have to be considered the jewel in any crown, supplies the missing demonstrations of Fermat's last theorem. They are short and easy to read, but they took a very long time to find: twenty-five years for me, almost eighteen hundred years for mankind, not counting Fermat’s lost proof. As I explain below, the Wiles proof is not allowable. The other essay addresses the so-called formula of Euler, and shows that it cannot possibly be true. How did it ever gain currency? Did both Cotes and Euler commit a procedural error that went undetected? It is possible, but highly unlikely. I can think of only one other cause, and that is that the entire concept of imaginary numbers is invalid, that there is no such thing as a square root of negative unity. Consequently all problems that rely on imaginary numbers for their statements are false problems, and all proofs that rely on imaginary numbers, such as Legendre's proof of the irrationality of pi, Gauss’s proof of the so-called fundamental theorem of algebra, Lindemann’s proof of his corollary concerning the transcendence of pi, and Wiles’s proof of Fermat’s last theorem, are, through no fault of the gentlemen’s, false proofs. (2018, Hardcover with Jacket, 48 pages)
The book attempts to point out the interconnections between number theory and algebra with a view to making a student understand certain basic concepts in the two areas forming the subject-matter of the book.
Uncle Petros is a family joke. An ageing recluse, he lives alone in a suburb of Athens, playing chess and tending to his garden. If you didn't know better, you'd surely think he was one of life's failures. But his young nephew suspects otherwise. For Uncle Petros, he discovers, was once a celebrated mathematician, brilliant and foolhardy enough to stake everything on solving a problem that had defied all attempts at proof for nearly three centuries - Goldbach's Conjecture. His quest brings him into contact with some of the century's greatest mathematicians, including the Indian prodigy Ramanujan and the young Alan Turing. But his struggle is lonely and single-minded, and by the end it has apparently destroyed his life. Until that is a final encounter with his nephew opens up to Petros, once more, the deep mysterious beauty of mathematics. Uncle Petros and Goldbach's Conjecture is an inspiring novel of intellectual adventure, proud genius, the exhilaration of pure mathematics - and the rivalry and antagonism which torment those who pursue impossible goals.
Sophie Germain overcame gender stigmas and a lack of formal education to prove that for all prime exponents less than 100 Case I of Fermat's Last Theorem holds. Hidden behind a man's name, her brilliance as mathematician was first discovered by three of the greatest scholars of the eighteenth century, Lagrange, Gauss, and Legendre. In Sophie's Diary, Germain comes to life through a fictionalized journal that intertwines mathematics with historical descriptions of the brutal events that took place in Paris between 1789 and 1793. This format provides a plausible perspective of how a young Sophie could have learned mathematics on her own—both fascinated by numbers and eager to master tough subjects without a teacher's guidance. Her passion for mathematics is integrated into her personal life as an escape from societal outrage. Sophie's Diary is suitable for a variety of readers—both young and old, mathematicians and novices—who will be inspired and enlightened on a field of study made easy, as told through the intellectual and personal struggles of an exceptional young woman.
This book is designed to meet the needs of the first course in Number Theory for the undergraduate students of various Indian and foreign universities. The students who are appearing at various competitive examinations where mathematics is on for testing shall also find it useful.
This article proposes a synthesized classification of some Goldbach-like conjectures, including those which are “stronger” than the Binary Goldbach’s Conjecture (BGC) and launches a new generalization of BGC briefly called “the Vertical Binary Goldbach’s Conjecture” (VBGC), which is essentially a metaconjecture, as VBGC states an infinite number of conjectures stronger than BGC, which all apply on “iterative” primes with recursive prime indexes (i-primeths).
For many students interested in pursuing - or required to pursue - the study of mathematics, a critical gap exists between the level of their secondary school education and the background needed to understand, appreciate, and succeed in mathematics at the university level. A Concise Introduction to Pure Mathematics provides a robust bridge over this gap. In nineteen succinct chapters, it covers the range of topics needed to build a strong foundation for the study of the higher mathematics. Sets and proofs Inequalities Real numbers Decimals Rational numbers Introduction to analysis Complex numbers Polynomial equations Induction Integers and prime numbers Counting methods Countability Functions Infinite sets Platonic Solids Euler's Formula Written in a relaxed, readable style, A Concise Introduction to Pure Mathematics leads students gently but firmly into the world of higher mathematics. It demystifies some of the perceived abstractions, intrigues its readers, and entices them to continue their exploration on to analysis, number theory, and beyond.
The definitive and essential collection of classic and new essays on analytic theories of truth, revised and updated, with seventeen new chapters. The question "What is truth?" is so philosophical that it can seem rhetorical. Yet truth matters, especially in a "post-truth" society in which lies are tolerated and facts are ignored. If we want to understand why truth matters, we first need to understand what it is. The Nature of Truth offers the definitive collection of classic and contemporary essays on analytic theories of truth. This second edition has been extensively revised and updated, incorporating both historically central readings on truth's nature as well as up-to-the-moment contemporary essays. Seventeen new chapters reflect the current trajectory of research on truth.