Download Free Gold Nanostructures For Sensing And Functional Bioimaging Book in PDF and EPUB Free Download. You can read online Gold Nanostructures For Sensing And Functional Bioimaging and write the review.

Discover how metal-enhanced fluorescence is changing traditional concepts of fluorescence This book collects and analyzes all the current trends, opinions, and emerging hot topics in the field of metal-enhanced fluorescence (MEF). Readers learn how this emerging technology enhances the utility of current fluorescence-based approaches. For example, MEF can be used to better detect and track specific molecules that may be present in very low quantities in either clinical samples or biological systems. Author Chris Geddes, a noted pioneer in the field, not only explains the fundamentals of metal-enhanced fluorescence, but also the significance of all the most recent findings and models in the field. Metal-enhanced fluorescence refers to the use of metal colloids and nanoscale metallic particles in fluorescence systems. It offers researchers the opportunity to modify the basic properties of fluorophores in both near- and far-field fluorescence formats. Benefits of metal-enhanced fluorescence compared to traditional fluorescence include: Increased efficiency of fluorescence emission Increased detection sensitivity Protect against fluorophore photobleaching Applicability to almost any molecule, including both intrinsic and extrinsic chromophores Following a discussion of the principles and fundamentals, the author examines the process and applications of metal-enhanced fluorescence. Throughout the book, references lead to the primary literature, facilitating in-depth investigations into particular topics. Guiding readers from the basics to state-of-the-technology applications, this book is recommended for all chemists, physicists, and biomedical engineers working in the field of fluorescence.
Nanoparticles and nanostructured materials represent an active area of research and impact in many application fields. The recent progress obtained in the synthesis of nanomaterials, and the fundamental understanding of their properties, has driven significant advances for their technological applications. The Special Issue “Functional Nanostructures for Sensors, Optoelectronic Devices and Drug Delivery” aims to provide an overview of the current research activities in the field of nanostructured materials with a particular emphasis on their potential applications for sensors, optoelectronic devices and biomedical systems. The Special Issue includes submission of original research articles and comprehensive reviews that demonstrated or summarized significant advances in the above-mentioned research fields. The Special Issue is made up of fifteen original research articles and three comprehensive reviews covering various topics of nanostructured materials and relative characterization from fundamental research to technological applications. More than 100 scientists from universities and research institutions lent their expertize and shared their research activities to ensure the success of this Special Issue.
This book highlights the synthesis/fabrication of novel materials for different kinds of optical applications. It covers all aspects of optical applications starting from LED/Lasers, SERS, bio-sensing, bio-imaging and non-linear optical applications such as optical limiting, saturable absorbers etc. The book describes the development of novel materials and geometry as well as engineering of their size and shape for harvesting better optical properties. Nonconventional plasmonic materials and their fabrication are discussed apart from the conventionally employed noble metal based nanosystems. In addition, development of Novel materials/structures for biosensing /bioimaging /optical limiting are also covered.
This book discusses fabrication of functionalized gold nanoparticles (GNPs) and multifunctional nanocomposites, their optical properties, and applications in biological studies. This is the very first book of its kind to comprehensively discuss published data on in vitro and in vivo biodistribution, toxicity, and uptake of GNP by mammalian cells providing a systematization of data over the GNP types and parameters, their surface functionalization, animal and cell models. As distinct from other related books, Gold Nanoparticles in Biomedical Applications discusses the immunological properties of GNPs and summarizes their applications as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo. Although the potential of GNPs in nanobiotechnology has been recognized for the past decade, new insights into the unique properties of multifunctional nanostructures have recently emerged. With these developments in mind, this book unites ground breaking experimental data with a discussion of hybrid nanoparticle systems that combine different nanomaterials to create multifunctional structures. These novel hybrids constitute the material basis of theranostics, bringing together the advanced properties of functionalized GNPs and composites into a single multifunctional nanostructure with simultaneous diagnostic and therapeutic functions. Such nanohybrids can be physically and chemically tailored for a particular organ, disease, and patient thus making personalized medicine available.
This book covers advances in nanostructured materials across a variety of biomedical applications as the field evolves from development of prototype devices to real-world implementation. It provides an in-depth look at the current state of the art in oxide nanostructures, carbon nanostructures, and 2D material fabrication and highlights the most important biomedical applications and devices of nanomaterials, including drug delivery, medical imaging, gene therapy, biosensors, and diagnostics. FEATURES Presents the findings of cutting-edge research activities in the field of nanomaterials, with a particular emphasis on biological and pharmaceutical applications Details finished and ongoing toxicity evaluations of emerging nanomaterials Offers a multidisciplinary perspective This book is recommended for senior undergraduate and graduate students, professionals, and researchers working in the fields of bioengineering, materials science and engineering, and biotechnology.
Gold Nanoparticles for Physics, Chemistry and Biology offers an overview of recent research into gold nanoparticles, covering their discovery, usage and contemporary practical applications.This Second Edition begins with a history of over 2000 years of the use of gold nanoparticles, with a review of the specific properties which make gold unique. Updated chapters include gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties and their future technological applications. New chapters have been included, and reveal the growing impact of plasmonics in research, with an introduction to quantum plasmonics, plasmon assisted catalysis and electro-photon conversion. The growing field of nanoparticles for health is also addressed with a study of gold nanoparticles as radiosensibiliser for radiotherapy, and of gold nanoparticle functionalisation. This new edition also considers the relevance of bimetallic nanoparticles for specific applications.World-class scientists provide the most up-to-date findings for an introduction to gold nanoparticles within the related areas of chemistry, biology, material science, optics and physics. It is perfectly suited to advanced level students and researchers looking to enhance their knowledge in the study of gold nanoparticles.
This book is a compendium of the finest research in nanoplasmonic sensing done around the world in the last decade. It describes basic theoretical considerations of nanoplasmons in the dielectric environment, gives examples of the multitude of applications of nanoplasmonics in biomedical and chemical sensing, and provides an overview of future trends in optical and non-optical nanoplasmonic sensing. Specifically, readers are guided through both the fundamentals and the latest research in the two major fields nanoplasmonic sensing is applied to – bio- and chemo-sensing – then given the state-of-the-art recipes used in nanoplasmonic sensing research.
Nano-Engineering at Functional Interfaces for Multi-disciplinary Applications: Electrochemistry, Photoplasmonics, Antimicrobials, and Anticancer Applications provides a comprehensive overview of the fundamentals and latest advances of nano-engineering strategies for the design, development, and fabrication of novel nanostructures for different applications in the fields of photoplasmonics and electrochemistry, as well as antibacterial and anticancer research areas. The book begins with an introduction to the fundamentals and characteristics of nanostructured interfaces and their associated technologies, including an overview of their potential applications in different fields. The following chapters present a thorough discussion of the synthesis, processing, and characterization methods of nanomaterials with unique functionalities suitable for energy harvesting, food and textile applications, electrocatalysis, biomedical applications and more. It then concludes outlining research future directions and potential industrial applications. - Presents the advantages and impact of nano-engineering in technological advances, with up-to-date discussions on their applications - Covers research directions and potential future applications of nano-engineering in industry - Includes case studies that illustrate important processes
Bioconjugate Techniques, 2nd Edition, is the essential guide to the modification and cross linking of biomolecules for use in research, diagnostics, and therapeutics. It provides highly detailed information on the chemistry, reagent systems, and practical applications for creating labeled or conjugate molecules. It also describes dozens of reactions with details on hundreds of commercially available reagents and the use of these reagents for modifying or cross linking peptides and proteins, sugars and polysaccharides, nucleic acids and oligonucleotides, lipids, and synthetic polymers. A one-stop source for proven methods and protocols for synthesizing bioconjugates in the lab Step-by-step presentation makes the book an ideal source for researchers who are less familiar with the synthesis of bioconjugates More than 600 figures that visually describe the complex reactions associated with the synthesis of bioconjugates Includes entirely new chapters on the latest areas in the field of bioconjugation as follows: Microparticles and nanoparticlesSilane coupling agentsDendrimers and dendronsChemoselective ligationQuantum dotsLanthanide chelatesCyanine dyesDiscrete PEG compoundsBuckyballs,fullerenes, and carbon nanotubesMass tags and isotope tagsBioconjugation in the study of protein interactions