Download Free Gold Nanoparticles For Physics Chemistry And Biology Book in PDF and EPUB Free Download. You can read online Gold Nanoparticles For Physics Chemistry And Biology and write the review.

The fascination with gold is a story which spans millennia, however scientists have recently found a new interest for gold when it is divided into miniscule grains, such as gold nanoparticles. This scientific enthusiasm started in various fields of science in the middle of the 1980s and the present book offers a panorama of the major scientific achievements obtained with gold nanoparticles.Various topics are reviewed such as: gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties, their use in biology and medicine as well as their possible toxicity and, finally, their future technological applications. The book also contains an in-depth study of the use of gold nanoparticles throughout the ages, starting from times where the concept of nanoparticles was beyond the realm of human imagination. All these topics are presented by world-class scientists within a set of self-contained chapters.This book may be used as an advanced textbook by graduate students and scientists who need an introduction to gold nanoparticles. It is also suitable for experts in the related areas of chemistry, biology, material science, optics and physics, who are interested in broadening their knowledge and who wish to have an overview of the subject. Each chapter gradually leads the reader from the basics of a topic towards some of the current scientific challenges in the area. The necessary background material to achieve a solid understanding of each topic and the scientific literature to go further in the field is provided.
Gold Nanoparticles for Physics, Chemistry and Biology offers an overview of recent research into gold nanoparticles, covering their discovery, usage and contemporary practical applications.This Second Edition begins with a history of over 2000 years of the use of gold nanoparticles, with a review of the specific properties which make gold unique. Updated chapters include gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties and their future technological applications. New chapters have been included, and reveal the growing impact of plasmonics in research, with an introduction to quantum plasmonics, plasmon assisted catalysis and electro-photon conversion. The growing field of nanoparticles for health is also addressed with a study of gold nanoparticles as radiosensibiliser for radiotherapy, and of gold nanoparticle functionalisation. This new edition also considers the relevance of bimetallic nanoparticles for specific applications.World-class scientists provide the most up-to-date findings for an introduction to gold nanoparticles within the related areas of chemistry, biology, material science, optics and physics. It is perfectly suited to advanced level students and researchers looking to enhance their knowledge in the study of gold nanoparticles.
Gold Nanoparticles for Physics, Chemistry and Biology offers an overview of recent research into gold nanoparticles, covering their discovery, usage and contemporary practical applications. This Second Edition begins with a history of over 2000 years of the use of gold nanoparticles, with a review of the specific properties which make gold unique. Updated chapters include gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties and their future technological applications. New chapters have been included, and reveal the growing impact of plasmonics in research, with an introduction to quantum plasmonics, plasmon assisted catalysis and electro-photon conversion. The growing field of nanoparticles for health is also addressed with a study of gold nanoparticles as radiosensibiliser for radiotherapy, and of gold nanoparticle functionalisation. This new edition also considers the relevance of bimetallic nanoparticles for specific applications. World-class scientists provide the most up-to-date findings for an introduction to gold nanoparticles within the related areas of chemistry, biology, material science, optics and physics. It is perfectly suited to advanced level students and researchers looking to enhance their knowledge in the study of gold nanoparticles.
Due to their attractive electronic, optical, and thermal properties; gold nanoparticles (AuNPs) have emerged with great interest, as well as catalytic properties, in the fields of physics, chemistry, biology, medicine, material science and some interdisciplinary fields. This book examines a broad range of applications of gold nanoparticles such as: gold nanoparticles as an antigen carrier and as an adjuvant; laser synthesis of gold nanoparticles and the control over their properties; gold on carbon catalysts; gold nanoparticles as a delivery vehicle in biomedical applications; solution and solid-state methods to prepare Au nanoparticles; gold nanoparticles and their in-vitro property, the usefulness of gold nanoparticles in emerging infectious disease situations and a host of others.
Gold nanoparticles provide a platform for the development of new and efficient diagnostic and therapeutic tools.This book offers a general guide to the synthesis and coating of gold nanoparticles. It describes the links between optical features and geometries of gold nanoparticles and provides a readily comprehensible connection in all the chapters between the geometry of gold nanoparticles and their final applications.
Gold has traditionally been regarded as inactive as a catalytic metal. However, the advent of nanoparticulate gold on high surface area oxide supports has demonstrated its high catalytic activity in many chemical reactions. Gold is active as a heterogeneous catalyst in both gas and liquid phases, and complexes catalyse reactions homogeneously in solution. Many of the reactions being studied will lead to new application areas for catalysis by gold in pollution control, chemical processing, sensors and fuel cell technology. This book describes the properties of gold, the methods for preparing gold catalysts and ways to characterise and use them effectively in reactions. The reaction mechanisms and reasons for the high activities are discussed and the applications for gold catalysis considered./a
This edited book highlights the central players in the Bionanotechnology field - which are the nanostructures and biomolecules. It provides broad examples of current developments in Bionanotechnology research and is an excellent introduction to the field. The book describes how nanostructures are synthesized and details the wide variety of nanostructures available for biological research and applications. Examples of the unique properties of nanostructures are provided along with the current applications of these nanostructures in biology and medicine. The final chapters of the book describe the toxicity of nanostructures.
This book describes the latest developments in the new research discipline of X-ray nanochemistry, which uses nanomaterials to enhance the effectiveness of X-ray irradiation. Nanomaterials now can be synthesized in such a way as to meet the demand for complex functions that enhance the X-ray effect. Innovative methods of delivering the X-rays, which can interact with those nanomaterials much more strongly than energetic electrons and gamma rays, also create new opportunities to enhance the X-ray effect. As a result, new concepts are conceived and new developments are made in the last decade, which are discussed and summarized in this book. This book will help define the discipline and encourage more students and scientists to work in this discipline. These efforts will eventually lead to formation of a full set of physical, chemical and materials principles for this new research field.
Gold Nanoparticles - Reaching New Heights contains recent research on the preparation, characterization, fabrication, and potential of optical and biological applications of gold nanoparticles (AuNPs). It is promising novel research that has received a lot of interest over the last few decades. It covers advanced topics on optical, physical, medicinal, and biological applications of AuNPs. Development of green nanotechnology is generating the interest of researchers towards the synthesis of eco-friendly, safe, non-toxic applications, which can be used for manufacture at a large scale. These are simple, cost-effective, stable, enduring, and reproducible aqueous room temperature synthesis applications to obtain the self-assembly of AuNPs. This potentially unique work offers various approaches to R&D with AuNP materials in aqueous or non-aqueous phases through fully modified or unmodified states as hybrids. Nanotechnology and nanoscience can regulate substances at the nanoscale, and nanodimension substances of a few nanometers allow us to control the novel practical applications of AuNPs. This book presents an overview of current AuNP fundamental and substantial applications and research worldwide, which investigates the techniques of AuNP preparation, various types of characterization, and possible applications related to AuNP research. It is an important book for research organizations, government research centers, academic libraries, and R&D groups interested in recent research and development of AuNPs.
This book is the first of its kind that focuses on the chemistry and biology of ellagitannins, a special class of naturally occurring polyphenols which have so far not received the attention they deserve. These polyphenolic substances are found in many plants, including numerous food sources. They not only exhibit unique structural features that fascinate most chemists who are aware of their existence, but also express remarkable biological activities that have yet to attract the interest of the pharmaceutical industry. This is surprising because ellagitannins have been identified as active principles in traditional Chinese medicines.The principal aim of this book is to set the record straight. Most, if not all, worldwide experts in each aspect of the chemistry and biology of this underestimated class of natural products have contributed to this book. It covers topics such as their structural determination and natural occurrence; the most up-to-date knowledge of their biosynthesis; the current state of the art of their total chemical synthesis; their main physicochemical properties and principal biological activities; their presence in food and beverages; and their related health effects. All together, nine chapters compose this book whose content is placed into historical perspective in a yet inspiring preface written by one of the pioneers in modern polyphenol research, Professor Edwin Haslam. This book will be useful not only to scientists involved in natural product research, but also to lecturers and their students as a source of key references and/or a textbook.