Download Free Glycobiology And Medicine Book in PDF and EPUB Free Download. You can read online Glycobiology And Medicine and write the review.

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
Along with nucleic acids, proteins, and lipids, carbohydrates stand as one of four main components of cellular architecture. However, glycobiology (or carbohydrate bioscience) is little understood by non-experts, partly because carbohydrates are a complex, diverse class of molecules structurally and functionally. In recent years, advances in computational analytics (glycomics) have allowed us to better interpret and realize the importance of glycobiology in human health and disease, and glycans and their associated processes have been shown to play a significant role across a variety of disease types. As the biomedical sciences continue to adopt multi-omic and precision medicine approaches, a greater understanding of glycobiology is essential for maintaining healthy physiology and advancing disease treatment.Translational Glycobiology in Human Health and Disease offers a deep examination of glycobiology for experts and non-experts alike in areas ranging from the role of glycobiology in chronic and infectious diseases to advances in technologies for higher throughput analysis and diagnosis. While keeping human health in the forefront, this book integrates a thorough discussion of glycobiology fundamentals with its growing areas of application and societal impact. With emphasis throughout on the interdisciplinary nature of glycosciences, this book also features perspectives from the health, computational (glycoanalytics), materials, biopharmaceutical, and diagnostic sciences.Disease and speciality areas addressed include gycoimmunology, neuroglycobiology, commensal glycobiology, gut health, regenerative medicine and glycobiology, glycobiology and cancer, congenital disorders of glycosylation, infectious disease glycobiology, and parasite glycobiology. Computational approaches discussed, supporting the advance of new research, include advanced glycoanalytics, glycomics microarrays, glycoengineering, and glycol systems biology. Additionally, authors consider impact areas for society and public health, such as glycobiology and entrepreneurship, policy and regulatory requirements for glycosylation, future research, and translation to new diagnostics and drug discovery. - Provides a deep, foundational overview of glycoscience and its translational potential, highlighting glycobiology's growing role in human health and disease study - Examines a broad range of relevant disease areas and applications of glycobiology in policy and public health - Features chapter contributions from leading, international experts in the field, fully integrating perspectives from the health, computational, materials, biopharmaceutical, and diagnostic sciences
Marine glycobiology is an emerging and exciting area in the field of science and medicine. Glycobiology, the study of the structure and function of carbohydrates and carbohydrate-containing molecules, is fundamental to all biological systems and represents a developing field of science that has made huge advances in the last half-century. This book revolutionizes the concept of marine glycobiology, focusing on the latest principles and applications of marine glycobiology and their relationships.
A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.
This book contains the Proceedings of the Sixth Jenner Glycobiology and Medicine Symposium, held 14-17 September, 2002, in Seillac, France. This book highlights the latest developments in glycoimmunology, including glycosylation-dependent bacterial and viral infections, lectin and proteoglycan-dependent interactions in leukocyte homing processes to lymphoid tissues and inflamed tissues, congenital defects in glycosylation of glycoproteins and glycolipids, and the role of carbohydrates in tumour development and neuropathology, including Creutzfeldt-Jakob disease.
Structural Glycobiology covers the experimental, theoretical, and alternative technologies used in the study of the structural basis for the diverse biological roles of carbohydrates. The book overviews the application of specialized technologies to the study of carbohydrates in biology, reviews relevant and current research in the field, and is illustrated throughout by specific examples of how research investigations have yielded key structural and associated biological data on carbohydrates and glycolipids. In particular, the book focuses on: X-ray crystallography and small-angle scattering, NMR, and cryo-electron microscopy techniques Theoretical (modeling-based) approaches, such as molecular mechanics, molecular dynamics, free energy calculations, and carbohydrate docking Alternative techniques for yielding structural information on carbohydrates from complex biological samples Carbohydrates in medicine, specifically in areas that have been directly impacted by our understanding of the structural role of carbohydrates in immune recognition: cancer, organ transplantation, and infection
Introduction to Glycobiology reveals the true impact of the sugars on biological systems, explaining their function at the molecular, cellular, and organismal level and their clinical relevance.
This book presents in an easy-to-read format a summary of the important central aspects of microbial glycobiology, i.e. the study of carbohydrates as related to the biology of microorganisms. Microbial glycobiology represents a multidisciplinary and emerging area with implications for a range of basic and applied research fields, as well as having industrial, medical and biotechnological implications. - Individual chapters provided by leading international scientists in the field yield insightful, concise and stimulating reviews - Provides researchers with an overview and synthesis of the latest research - Each chapter begins with a brief 200 word Summary/Abstract detailing the topic and focus of the chapter, as well as the concepts to be addressed - Allows researchers to see at a glance what each chapter will cover - Each chapter includes a Research Focus Box - Identifies important problems that still need to be solved and areas that require further investigation
The aim of the book is to provide a succinct overview of the current status of glycoscience from both basic biological and medical points of view and to propose future directions, in order to facilitate further integrations of glycoscience with other fields in biological and medical studies. Glycans (carbohydrate oligomers) are the so-called “building blocks” of carbohydrates, nucleic acids, proteins and lipids and play major roles in many biological phenomena as well as in various pathophysiological processes. However, this area of glycoscience has been neglected from the research community because glycan structures are very complex and functionally diverse and as compared to proteins and nucleic acids simple tools for the amplification, sequencing and auto-synthesis of glycans are not available. Many scientists in other fields of research have now realized that glycosylation, i.e. the addition of glycans to a protein backbone, is the most abundant post translational modification reactions and is an important field of research and sometimes they require a glycobiology and/or glycochemistry approach to be used. It is still difficult, however, for non-expert researchers to use these techniques. This book will provide numerous but simple overviews of current topics and protocols for the experiments. The book is aimed at university students and above, including non-experts in the field of glycoscience.
This book summarizes recent advances in antibody glycosylation research. Covering major topics relevant for immunoglobulin glycosylation - analytical methods, biosynthesis and regulation, modulation of effector functions - it provides new perspectives for research and development in the field of therapeutic antibodies, biomarkers, vaccinations, and immunotherapy. Glycans attached to both variable and constant regions of antibodies are known to affect the antibody conformation, stability, and effector functions. Although it focuses on immunoglobulin G (IgG), the most explored antibody in this context, and unravels the natural phenomena resulting from the mixture of IgG glycovariants present in the human body, the book also discusses other classes of human immunoglobulins, as well as immunoglobulins produced in other species and production systems. Further, it reviews the glycoanalytical methods applied to antibodies and addresses a range of less commonly explored topics, such as automatization and bioinformatics aspects of high-throughput antibody glycosylation analysis. Lastly, the book highlights application areas ranging from the ones already benefitting from antibody glycoengineering (such as monoclonal antibody production), to those still in the research stages (such as exploration of antibody glycosylation as a clinical or biological age biomarker), and the potential use of antibody glycosylation in the optimization of vaccine production and immunization protocols. Summarizing the current knowledge on the broad topic of antibody glycosylation and its therapeutic and biomarker potential, this book will appeal to a wide biomedical readership in academia and industry alike. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.