Download Free Glyceraldehyde 3 Phosphate Dehydrogenase Gapdh Book in PDF and EPUB Free Download. You can read online Glyceraldehyde 3 Phosphate Dehydrogenase Gapdh and write the review.

Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH): The Quintessential Moonlighting Protein in Normal Cell Function and in Human Disease examines the biochemical protein interactions of the multi-dimensional protein GAPDH, further considering the regulatory mechanisms through which cells control their functional diversity. This protein's diverse activities range from nuclear tRNA export and the maintenance of genomic integrity, to cytoplasmic post-transcriptional control of gene expression and receptor mediated cell signaling, to membrane facilitation of iron metabolism, trafficking and fusion. This book will be of great interest to basic scientists, clinicians and students, including molecular and cell biologists, immunologists, pathologists and clinical researchers who are interested in the biochemistry of GAPDH in health and disease. - Contextualizes how GAPDH is utilized by cells in vivo - Provides detailed insight into GAPDH post-translational modifications, including functional diversity and its subcellular localization - Includes forward-thinking exposition on tough topics, such as the exploration of how GAPDG performs functions, how it decides where it should be present and requisite structural requirements
Effectively merge basic science and clinical skills with Elsevier's Integrated Review Biochemistry, by John W. Pelley, PhD. This concise, high-yield title in the popular Integrated Review Series focuses on the core knowledge in biochemistry while linking that information to related concepts from other basic science disciplines. Case-based questions at the end of each chapter enable you to gauge your mastery of the material, and a color-coded format allows you to quickly find the specific guidance you need. Online access via www.studentconsult.com - included with your purchase - allows you to conveniently access the book's complete text and illustrations online as well as relevant content from other Student Consult titles. This concise and user-friendly reference provides crucial guidance for the early years of medical training and USMLE preparation. Spend more time reviewing and less time searching thanks to an extremely focused, "high-yield" presentation. Gauge your mastery of the material and build confidence with both case-based, andUSMLE-style questions that provide effective chapter review and quick practice for your exams. Access the full contents online at www.studentconsult.com where you'll find the complete text and illustrations, "Integration Links" to bonus content in other Student Consult titles, an interactive community center with a wealth of additional resources, and much more! Grasp and retain vital concepts more easily thanks to a color-coded format, succinct,text, key concept boxes, and dynamic illustrations that facilitate learning in a highly visual approach. Effectively review for problem-based courses with the help of text boxes that help you clearly see the clinical relevance of the material. Great for visual learners!
This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.
The book represents a comprehensive review and synthesis of the biomedical literature that spans over a half-century on a single protein called glyceraldehyde 3-phosphate dehydrogenase (or, GAPDH). Due to the protein’s involvement in a vast array of cellular activities, GAPDH is of interest to the cell biologist, immunologist, virologist, biochemist etc. The protein has a significant role in fertility, cancer and neurodegeneration, suggesting that this book can be a vital resource for drug development. GAPDH function may provide insight into anesthesia. Furthermore, GAPDH is highly conserved meaning that the protein found in microorganisms, such as pathogens, remained relatively unchanged in evolution. Pathogens use GAPDH as a virulence factor, offering a unique challenge in developing anti-microbial agents that target this protein. To the evolutionary biologist, a book on the multi-functionality of GAPDH provides a focal point for a cogent discussion on the very origin of life.
Moonlighting Proteins: Novel Virulence Factors in Bacterial Infections is a complete examination of the ways in which proteins with more than one unique biological action are able to serve as virulence factors in different bacteria. The book explores the pathogenicity of bacterial moonlighting proteins, demonstrating the plasticity of protein evolution as it relates to protein function and to bacterial communication. Highlighting the latest discoveries in the field, it details the approximately 70 known bacterial proteins with a moonlighting function related to a virulence phenomenon. Chapters describe the ways in which each moonlighting protein can function as such for a variety of bacterial pathogens and how individual bacteria can use more than one moonlighting protein as a virulence factor. The cutting-edge research contained here offers important insights into many topics, from bacterial colonization, virulence, and antibiotic resistance, to protein structure and the therapeutic potential of moonlighting proteins. Moonlighting Proteins: Novel Virulence Factors in Bacterial Infections will be of interest to researchers and graduate students in microbiology (specifically bacteriology), immunology, cell and molecular biology, biochemistry, pathology, and protein science.
Photosynthesis: Physiology and Metabolism is the we have concentrated on the acquisition and ninth volume in theseries Advances in Photosynthesis metabolism of carbon. However, a full understanding (Series Editor, Govindjee). Several volumes in this of reactions involved in the conversion of to series have dealt with molecular and biophysical sugars requires an integrated view of metabolism. aspects of photosynthesis in the bacteria, algae and We have, therefore, commissioned international cyanobacteria, focussing largely on what have been authorities to write chapters on, for example, traditionally, though inaccurately, termed the ‘light interactionsbetween carbon and nitrogen metabolism, reactions’(Volume 1, The Molecular Biology of on respiration in photosynthetic tissues and on the Cyanobacteria;Volume2,AnoxygenicPhotosynthetic control of gene expression by metabolism. Photo- Bacteria, Volume 3, Biophysical Techniques in synthetic carbon assimilation is also one of the most Photosynthesis and Volume 7, The Molecular Biology rapid metabolic processes that occurs in plant cells, of the Chloroplasts and Mitochondria in Chlamy- and therefore has to be considered in relation to domonas). Volume 4 dealt with Oxygenic Photo- transport, whether it be the initial uptake of carbon, synthesis: The Light Reactions, and volume 5 with intracellular transport between organelles, inter- Photosynthesis and the Environment, whereas the cellular transport, as occurs in plants, or transport structure and function of lipids in photosynthesis of photosynthates through and out of the leaf. All was covered in Volume 6 of this series: Lipids in these aspects of transport are also covered in the Photosynthesis: Structure, Function and Genetics, book.
Myofibrillogenesis has been studied extensively over the last 100 years. Until recently, we have not had a comprehensive understanding of this fundamental process. The emergence of new technologies in molecular and cellular biology, combined with classical embryology, have started to unravel some of the complexities of myofibril assembly in striated muscles. In striated muscles, the contractile proteins are arranged in a highly ordered three dimensional lattice known as the sarcomere. The assembly of a myofibril involves the precise ordering of several proteins into a linear array of sarcomeres. Multiple isoforms in many of these proteins further complicate the process, making it difficult to define the precise role of each component. This volume has been compiled as a comprehensive reference on myofibrillogenesis. In addition, the book includes reviews on myofibrillar disarray under various pathological conditions, such as familial hypertrophic cardiomyopathy (FHC), and incorporates a section on the conduction system in the heart. Much of the information in this volume has not been described elsewhere. Presented in a manner to be of value to students and teachers alike, "Myofibrillogenesis" will be an invaluable reference source for all in the fields of muscle biology and heart development.
Expert biochemist N.V. Bhagavan's new work condenses his successful Medical Biochemistry texts along with numerous case studies, to act as an extensive review and reference guide for both students and experts alike. The research-driven content includes four-color illustrations throughout to develop an understanding of the events and processes that are occurring at both the molecular and macrolecular levels of physiologic regulation, clinical effects, and interactions. Using thorough introductions, end of chapter reviews, fact-filled tables, and related multiple-choice questions, Bhagavan provides the reader with the most condensed yet detailed biochemistry overview available. More than a quick survey, this comprehensive text includes USMLE sample exams from Bhagavan himself, a previous coauthor. - Clinical focus emphasizing relevant physiologic and pathophysiologic biochemical concepts - Interactive multiple-choice questions to prep for USMLE exams - Clinical case studies for understanding basic science, diagnosis, and treatment of human diseases - Instructional overview figures, flowcharts, and tables to enhance understanding
"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.