Download Free Global Warming Potential Of Carbon Dioxide Emissions From Biomass Stored In The Anthroposphere And Used For Bioenergy At End Of Life Book in PDF and EPUB Free Download. You can read online Global Warming Potential Of Carbon Dioxide Emissions From Biomass Stored In The Anthroposphere And Used For Bioenergy At End Of Life and write the review.

There is growing interest in understanding how storage or delayed emission of carbon in products based on bioresources might mitigate climate change, and how such activities could be credited. In this research we extend the recently introduced approach that integrates biogenic carbon dioxide (CO) fluxes with the global carbon cycle (using biogenic global warming potential [GWP]) to consider the storage period of harvested biomass in the anthroposphere, with subsequent oxidation. We then examine how this affects the climate impact from a bioenergy resource. This approach is compared to several recent methods designed to address the same problem. Using both a 100- and a 500-year fixed time horizon we calculate the GWP factor for every combination of rotational and anthropogenic storage periods between 0 and 100 years. The resulting GWP factors range from -0.99 (1-year rotation and 100-year storage) to +0.44 (100-year rotation and 0-year storage). The approach proposed in this study includes the interface between biomass growth and emissions and the global carbon cycle, whereas other methods do not model this. These results and the characterization factors produced can determine the climate change benefits or impacts associated with the storage of biomass in the anthroposphere, and the subsequent release of biogenic CO with the radiative forcing integrated in a fixed time window.
Over the past decade, renewables-based technology and sustainability assessment methods have grown tremendously. Renewable energy and products have a significant role in the market today, and the same time sustainability assessment methods have advanced, with a growing standardization of environmental sustainability metrics and consideration of social issues as part of the assessment. Sustainability Assessment of Renewables-Based Products: Methods and Case Studies is an extensive update and sequel to the 2006 title Renewables-Based Technology: Sustainability Assessment. It discusses the impressive evolution and role renewables have taken in our modern society, highlighting the importance of sustainability principles in the design phase of renewable-based technologies, and presenting a wide range of sustainability assessment methods suitable for renewables-based technologies, together with case studies to demonstrate their applications. This book is a valuable resource for academics, businesses and policy makers who are active in contributing to more sustainable production and consumption. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs Topics covered include: The growing role of renewables in our society Sustainability in the design phase of products and processes Principles of sustainability assessment Land use analysis Water use analysis Material and energy flow analysis Exergy and cumulative exergy analysisCarbon and environmental footprint methods Life Cycle Assessment (LCA), social Life Cycle Assessment and Life Cycle Costing (LCC) Case studies: renewable energy, bio-based chemicals and bio-based materials.
Managing Global Warming: An Interface of Technology and Human Issues discusses the causes of global warming, the options available to solve global warming problems, and how each option can be realistically implemented. It is the first book based on scientific content that presents an overall reference on both global warming and its solutions in one volume. Containing authoritative chapters written by scientists and engineers working in the field, each chapter includes the very latest research and references on the potential impact of wind, solar, hydro, geo-engineering and other energy technologies on climate change. With this wide ranging set of topics and solutions, engineers, professors, leaders and policymakers will find this to be a valuable handbook for their research and work. Presents chapters that are accompanied by an easy reference summary Includes up-to-date options and technical solutions for global warming through color imagery Provides up-to-date information as presented by a collection of renowned global experts
This brief contains information on the reduction of environmental impact and explains how it is a key driver for the R&D of new forest products. The authors, experts in the field, describe how Life Cycle Assessment (LCA) is used to assess the environmental impact of such products, e.g. in order to guide R&D or attract investments. The authors describe the main challenges of carrying out LCAs on forest products, make recommendations for managing these challenges, and discuss future research needs. LCA case studies are used to illustrate the challenges, covering a variety of forest products: building components, biofuels, industrial chemicals, textile fibres and clothing. Described challenges include the planning of LCA studies (e.g.how can one use LCA in R&D?), the modelling of product systems (how can one handle multi-functionality and uncertainties related to waste handling and geographical location of future production?) and environmental impact (how can one assess water and land use impact, and the climate impact of biomass?).
Torrefaction of Biomass for Energy Applications: From Fundamentals to Industrial Scale explores the processes, technology, end-use, and economics involved in torrefaction at the industrial scale for heat and power generation. Its authors combine their industry experience with their academic expertise to provide a thorough overview of the topic. Starting at feedstock pretreatment, followed by torrefaction processes, the book includes plant design and operation, safety aspects, and case studies focusing on the needs and challenges of the industrial scale. Commercially available technologies are examined and compared, and their economical evaluation and life cycle assessment are covered as well. Attention is also given to non-woody feedstock, alternative applications, derived fuels, recent advances, and expected future developments. For its practical approach, this book is ideal for professionals in the biomass industry, including those in heat and power generation. It is also a useful reference for researchers and graduate students in the area of biomass and biofuels, and for decision makers, policy makers, and analysts in the energy field. Compares efficiency and performance of different commercially available technologies from the practical aspects of daily operation in an industrial scale plant Presents a cost analysis of the production, logistics, and storage of torrefied biomass Includes case studies addressing challenges that may occur in the daily operation in an industrial scale plant Covers other associated technologies, the densification of torrefied biomass, and non-woody feedstock
Carbon Dioxide Sequestration in Cementitious Construction Materials – Second Edition follows on the success of the previous edition and provides an up-to-date review on recent research developments on cementitious construction materials based on carbon dioxide storage. Along with the addition of an entire new section on bio- sequestration. Brand new chapters are included on carbonation methods such as carbon sequestration of cement pastes during pressurized CO2 curing; carbon dioxide sequestration of low-calcium fly ash via direct aqueous carbonation; increasing the efficiency of carbon dioxide sequestration through high temperature carbonation; and carbon sequestration in engineered cementitious composites. There are also several new case studies on sequestration of industrial wastes, which include carbon dioxide sequestration by direct mineralization of fly ash; the effect of direct carbonation routes of basic oxygen furnace slag on strength and hydration of blended cement paste; carbon sequestration of mine waste and utilization as a supplementary cementitious material and carbon dioxide sequestration on masonry blocks based on industrial wastes. This updated edition will be a valuable reference resource for academic researchers, materials scientists and civil engineers, and other construction professionals looking for viable routes for carbon sequestration in building materials. Promotes the importance of CO2? storage in carbonation of construction materials, especially reincorporation of CO2? during fabrication Discusses a wide range of cementitious materials with CO2? storage capabilities Features redesign of cementation mechanisms to utilize CO2? during fabrication Covers biosequestration
This book offers a methodical explanation of our biomass-driven ecosystem, the undeniable uncertainties posed by the response of vegetation to changes in environmental conditions and the fact that humans everywhere have an interest, even an obligation, to cooperate in a global campaign to combat climate change.
The problems of global warming and environmental pollution are some of the most difficult challenges this planet faces in the 21st century. Carbon dioxide, often identified as one of the culprits, is an inevitable product of the combustion of fossil fuels, necessary for our modern economies to survive. Thus, The Carbon Dioxide Problem refers to the extremely complex matter of limiting carbon dioxide concentrations to levels that pose little environmental risk without devastating national economies and reducing living standards on the planet. This timely book offers solutions to the global warming problem that lie in the development of comprehensive energy and environmental policies that emphasize the need to use energy efficiently while looking to develop alternative renewable sources. The experience of Japan is particularly relevant due to that country's great dependence on foreign fuel supplies, which has led it to be at the forefront of developing new energy conservation and antipollution technologies.