Download Free Global Thermohaline Circulation And Ocean Atmosphere Coupling Book in PDF and EPUB Free Download. You can read online Global Thermohaline Circulation And Ocean Atmosphere Coupling and write the review.

This book presents the views of leading scientists on the knowledge of the global ocean circulation following the completion of the observational phase of the World Ocean Circulation Experiment. WOCE's in situ physical and chemical measurements together with satellite altimetry have produced a data set which provides for development of ocean and coupled ocean-atmosphere circulation models used for understanding ocean and climate variability and projecting climate change. This book guides the reader through the analysis, interpretation, modelling and synthesis of this data.
This book presents a global hydrographic description of the thermohaline circulation, an introduction to the theoretical aspects of this phenomenon, and observational evidence for the theory. The hydrographic description and the observational evidence are based on data sources available via internet, mainly from the World Oceanographic Experiment (WOCE). The book also offers an introduction to hydrographic analysis and interpretation.
Two experiments with a recently developed zonally averaged climate model which includes the ocean's thermohaline circulation are performed. The first experiment simulates a global thermohaline circulation in which deep water is formed in the North Atlantic, flows as a deep current into the Pacific basin and then upwells. The water is returned as a near-surface flow through the Indian Ocean into the South Atlantic Gordon, 1986. The present model reproduces a global deep circulation under present-day forcing and shows that the zonal atmospheric water vapor transport is of importance. The second experiment studies the effect of glacial meltwater runoff at different latitudes on the thermohaline circulation, meridional heat flux and surface air temperature. Depending on the strength and position of the forcing anomaly, severe cooling can be observed in high northern latitudes. The mechanism may provide further insight into the Younger Dryas climate event.
One of the most crucial but still very poorly understood topics of oceanographic science is the role of ocean processes in contributing to the dynamics of climate and global change. This book presents a series of high level lectures on the major categories of ocean/atmosphere processes. Three of these major issues are the focus of the lectures: (1) air--sea interaction processes; (2) water mass formation, dispersion and mixing; (3) general circulation, with specific emphasis on the thermohaline component. Global examples in the world ocean are provided and discussed in the lectures. In parallel, the Mediterranean Sea is a laboratory basin in providing analogues of the above global processes relevant to climate dynamics. They include the Mediterranean thermohaline circulation with its own `conveyor belt'; intermediate and deep water mass formation and transformations, dispersion and mixing. No other book in the field provides a review of fundamental lectures on these processes, coupled with global examples and their Mediterranean analogues.
The exchange of momentum, heat, moisture, gases (such as CO2 and O2) and salt between the atmosphere and the ocean is a phenomenon of paramount importance for the dynamics of the atmosphere and the ocean. With the pressing need for reliable climate forecast (e.g. to deal with severe food and energy problems) interactive ocean-atmosphere models have become one of the main objectives of geophysical fluid dynamics. This volume provides the first state-of-the-art review of interactive ocean-atmosphere modelling and its application to climates. The papers are by active and eminent scientists from different countries and different disciplines. They provide a up-to-date survey of major recent discoveries and valuable recommendations for future research.
One of the major experiments in earth science at the present time is about to begin: the World Climate Research Program (WCRP). The objectives of WCRP are to determine the extent to which climate change can be predicted, and the extent to which human activities (such as increasing the level of CO ) can influence our climate. 2 To understand and possibly to predict climate change, one needs a good understanding of the dynamics of the ocean, the atmosphere, and the processes by which they are coupled. Two major programs are being developed within WCRP: TOGA (Tropical Oceans, Global Atmosphere) and WOCE (World Ocean CirculatIon Experiment). The success of these programs will depend on many things, not least of which is the existence of a pool of active young researchers. This NATO Advanced Study Institute brought together students and young scientists from 13 countries, most of them from Europe and North America. The objective was to provide them with a background in the perceived state of knowledge of atmosphere and ocean dynamics, and to mediate a flavour of the problems presently concerning scientists active in climate related dynamics. In the past, the two disciplines of oceanography and meteorology have largely been carried out separately. But for climate research both disciplines must interact strongly, and another ob jecti ve of this school was to bring together both oceanographers and meteorologists. To promote an integrated approach, the lecture presentations were divided into two formats.
Recent results from modeling and observational studies demonstrate that the tropical Atlantic is a critical region for processes that maintain the meridional overturning circulation, such as cross-equatorial exchanges, and for sea surface temperature variability that impacts on climate variability of the coupled tropical ocean/atmosphere system. The theme of this book is the inter-hemispheric and inter-gyre exchanges of heat, salt and fresh water, while its goal is to improve the knowledge of the tropical Atlantic dynamics and how it affects the global ocean. A clear understanding of the dynamics of processes that affect the flow of mass and heat between the southern and the northern hemispheres in the upper few hundred meters in the tropical Atlantic and of those associated to the ocean circulation or to surface signals, from decadal, inter-annual to mesoscale periods, becomes necessary to better evaluate their contribution to the interhemispheric mass exchange. These processes are believed to be largely responsible in driving the sea surface temperature, which in turn, is a critical parameter to investigate ocean-atmospheric interactions. Output produced by regional models is also used to complement the observations and to provide additional information on their spatial and temporal variability. The subtropical cells, by bringing water masses subducted in the subtropics to the equator, and zonal currents investigated here contribute to the interhemispheric water exchange. Special attention is also given to the warm and salty anticyclonic rings shed by the North Brazil Current, which are now known to have a much broader impact, not only on interhemispheric water mass transfer, but also on the environment of remote regions. Observations from different sources are blended together, are used to validate model outputs and are also assimilated into models to obtain a more complete and accurate picture of the oceanic circulation and of its time evolution.
Preface This book is the culmination of a workshop jointly organized by NATO and CEC on Climate-Ocean Interaction which was held at Lady Margaret Hall, Oxford University during 26-30 September 1988. The objective of the ARW was to assess the current status of research on climate-ocean interaction, with a major focus on the development of coupled atmosphere-ocean-ice models and their application in the study of past, present and possible future climates. This book contains 16 chapters divided into four parts: Introduction; Observations of the Climate of the Ocean; Modelling the Atmospheric, Oceanic and Sea Ice Components of the Climatic System; and Simulating the Variability of Climate on Short, Medium and Long Time Scales. A fifth part contains the reports of the five Working Groups on: Climate Observations, Modelling, ENSO Modelling and Prediction, Climate-Ocean Interaction on TIme Scales of Decades to Centuries, and Impact of Paleoclimatic Proxy Data on Climate Modelling. Preface ix Acknowledgements I thank Howard Cattle and Neil Wells for their guidance and assistance as members of the Workshop Organizing Committee. I particularly thank Michael Davey for all his efforts as Local Organizer to make the ARW a success. I also thank the staff of Lady Margaret Hall, Oxford University, for their help with the arrangements for the ARW.