Download Free Global Scale Bedload Flux Modeling Book in PDF and EPUB Free Download. You can read online Global Scale Bedload Flux Modeling and write the review.

Bedload flux is an important component of the total fluvial sediment flux. Bedload dynamics can have a substantial effect on rivers and coastal morphology, infrastructure sustainability, aquatic ecology and water availability. Bedload measurements, especially for large rivers, are extremely scarce worldwide, where most global rivers have never been monitored. The paucity of bedload measurements is the result of 1) the nature of the problem (large spatial and temporal uncertainties), and 2) high costs due to the time-consuming nature of the measurement procedures (repeated bedform migration tracking, bedload samplers). Numerical models can help fill measurement gaps and provide a framework for predictions and hypothesis testing. Here, I present a first of its kind global bedload flux model using simplified Bagnold Equation, which considers only two dynamic (discharge and river slope) parameters along with few constant parameters (e.g., gravity, sediment density). Evaluation of model has been done based on observations for 59 river locations, mostly in the U.S. The model parameters, as well as other influential fluvial and basin parameters (e.g., discharge, drainage area, lithology), were evaluated against observed bedload to find their potential influence on bedload prediction. Considering the simplicity in the parameters needed to predict bedload flux through this model, and the capabilities to give first order estimation the model is helpful to give the large-scale overview of dynamic bedload flux universally. Also, the longitudinal dynamics between suspended and bedload sediment fluxes are mapped in three large rivers.
The Earth’s oceans are currently undergoing unprecedented changes: rivers have suffered a severe reduction in their sediment transport, and as a result, sediment input to the oceans has dropped lower than ever before. These inputs have varied over millennia as a result of both natural occurrences and human actions, such as the building of dams and the extraction of materials from riverbeds. Sedimentary Crisis at the Global Scale 1 examines how river basins have been affected by the sedimentary crises of various historical epochs. By studying global balances, it provides insights into the profound disruption of the solid transport of fluvial bodies. The book also explores studies of various rivers, from the Amazon, which remains relatively unaffected, to dying rivers such as the Colorado and the Nile.
With contributions from key researchers across the globe, and edited by internationally recognized leading academics, Gravel-bed Rivers: Processes and Disasters presents the definitive review of current knowledge of gravel-bed rivers. Continuing an established and successful series of scholarly reports, this book consists of the papers presented at the 8th International Gravel-bed Rivers Workshop. Focusing on all the recent progress that has been made in the field, subjects covered include flow, physical modeling, sediment transport theory, techniques and instrumentation, morphodynamics and ecological topics, with special attention given to aspects of disasters relevant to sediment supply and integrated river management. This up-to-date compendium is essential reading for geomorphologists, river engineers and ecologists, river managers, fluvial sedimentologists and advanced students in these fields.
Climate and anthropogenic changes impact the conditions of erosion and sediment transport in rivers. Rainfall variability and, in many places, the increase of rainfall intensity have a direct impact on rainfall erosivity. Increasing changes in demography have led to the acceleration of land cover changes in natural areas, as well as in cultivated areas, and, sometimes, in degraded areas and desertified landscapes. These anthropogenized landscapes are more sensitive to erosion. On the other hand, the increase in the number of dams in watersheds traps a great portion of sediment fluxes, which do not reach the sea in the same amount, nor at the same quality, with consequences on coastal geomorphodynamics. This book is dedicated to studies on sediment fluxes from continental areas to coastal areas, as well as observation, modeling, and impact analysis at different scales from watershed slopes to the outputs of large river basins. This book is concentrated on a number of keywords: “erosion” and “sediment transport”, “model” and “practice”, and “change”. The keywords are briefly discussed with respect to the relevant literature. The contributions in this book address observations and models based on laboratory and field data, allowing researchers to make use of such resources in practice under changing conditions.
The great deltas of the globe have been threatened for several decades but their decline now appears to be inevitable; they are receding and losing the fertility that supports their tens of millions of inhabitants. Our deltas are victims of the dramatic deterioration in the volume of continental sediment brought by rivers to the oceans. By nature, deltas are fragile eco- and geological organisms. For centuries, they have been subject to human actions in the Mediterranean and European world, and today a deep crisis is affecting the great tropical deltas. A chapter is also devoted to concerns facing the Mississippi, an “aging delta of the new world”. Sedimentary Crisis at the Global Scale 2 discusses possible strategies to protect the deltas of the world – or at least adapt them and their dependencies to the changes they face. Several models are possible, including comprehensive protection (such as in the Netherlands) and cautious and respectful opening to the forces of the oceans in an environment-first perspective.
"This report describes the theoretical principles of three-dimensional sediment transport and bed-evolution processes, and numerical solution of the appropriate governing equations. It also includes technical documentation and user's instructions for the sediment-operations program module developed as an integral part of the CH3D code."--P. ii.
This cutting-edge summary combines ideas from several sub-disciplines to provide an understanding of sediment routing systems and Earth surface dynamics.
The changing focus and approach of geomorphic research suggests that the time is opportune for a summary of the state of discipline. The number of peer-reviewed papers published in geomorphic journals has grown steadily for more than two decades and, more importantly, the diversity of authors with respect to geographic location and disciplinary background (geography, geology, ecology, civil engineering, computer science, geographic information science, and others) has expanded dramatically. As more good minds are drawn to geomorphology, and the breadth of the peer-reviewed literature grows, an effective summary of contemporary geomorphic knowledge becomes increasingly difficult. The fourteen volumes of this Treatise on Geomorphology will provide an important reference for users from undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic. Information on the historical development of diverse topics within geomorphology provides context for ongoing research; discussion of research strategies, equipment, and field methods, laboratory experiments, and numerical simulations reflect the multiple approaches to understanding Earth’s surfaces; and summaries of outstanding research questions highlight future challenges and suggest productive new avenues for research. Our future ability to adapt to geomorphic changes in the critical zone very much hinges upon how well landform scientists comprehend the dynamics of Earth’s diverse surfaces. This Treatise on Geomorphology provides a useful synthesis of the state of the discipline, as well as highlighting productive research directions, that Educators and students/researchers will find useful. Geomorphology has advanced greatly in the last 10 years to become a very interdisciplinary field. Undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic will find the answers they need in this broad reference work which has been designed and written to accommodate their diverse backgrounds and levels of understanding Editor-in-Chief, Prof. J. F. Shroder of the University of Nebraska at Omaha, is past president of the QG&G section of the Geological Society of America and present Trustee of the GSA Foundation, while being well respected in the geomorphology research community and having won numerous awards in the field. A host of noted international geomorphologists have contributed state-of-the-art chapters to the work. Readers can be guaranteed that every chapter in this extensive work has been critically reviewed for consistency and accuracy by the World expert Volume Editors and by the Editor-in-Chief himself No other reference work exists in the area of Geomorphology that offers the breadth and depth of information contained in this 14-volume masterpiece. From the foundations and history of geomorphology through to geomorphological innovations and computer modelling, and the past and future states of landform science, no "stone" has been left unturned!
This reference for engineers, and graduate students covers sediment transport and morphodynamics modelling in nearshore environments. It presents the fundamentals required for understanding the physics and for setting up numerical models. This book covers hydrodynamics of estuarine and coastal environments, properties of seafloor and estuarine composition, and hydroenvironmental interactions; emphasising the inter-relations of small- and large-scale processes, and short- and large-evolution timescales. The focus is, principally, on the application of shallow-water theory, but some surface wave models, and coupling of shallow-water models with surface waves is also discussed to some extent. The guidance on running regional models and the case studies presented are directed to managed realignment, coastal protection, climate change impacts, and offshore renewables. Key features: Gives a balanced review of this rich interdisciplinary area Bridges practical engineering and research Offers both large- and small-scale application Suits graduate students and researchers as well as consulting engineers Vanesa Magar is a senior researcher and associate professor at the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) in Baja California, Mexico. She was formerly a researcher and then a lecturer at Plymouth University, UK.
This book is a collection of extended papers based on presentations given during the ICEC 2018 conference, held in Caen, France, in August 2018. It explores both the limitations and advantages of current models, and highlights the latest developments concerning new numerical schemes, high-performance computing, multi-physics and multi-scale methods, and better interaction with field or scale model data. Accordingly, it addresses the interests of practitioners, stakeholders, researchers, and engineers active in this field.