Download Free Global Optimization With The Direct Algorithm Book in PDF and EPUB Free Download. You can read online Global Optimization With The Direct Algorithm and write the review.

Keywords: sampling methods, derivative-free optimization, global optimization, DIRECT.
After providing an in-depth introduction to derivative-free global optimization with various constraints, this book presents new original results from well-known experts on the subject. A primary focus of this book is the well-known class of deterministic DIRECT (DIviding RECTangle)-type algorithms. This book describes a new set of algorithms derived from newly developed partitioning, sampling, and selection approaches in the box- and generally-constrained global optimization, including extensions to multi-objective optimization. DIRECT-type optimization algorithms are discussed in terms of fundamental principles, potential, and boundaries of their applicability. The algorithms are analyzed from various perspectives to offer insight into their main features. This explains how and why they are effective at solving optimization problems. As part of this book, the authors also present several techniques for accelerating the DIRECT-type algorithms through parallelization and implementing efficient data structures by revealing the pros and cons of the design challenges involved. A collection of DIRECT-type algorithms described and analyzed in this book is available in DIRECTGO, a MATLAB toolbox on GitHub. Lastly, the authors demonstrate the performance of the algorithms for solving a wide range of global optimization problems with various constraints ranging from a few to hundreds of variables. Additionally, well-known practical problems from the literature are used to demonstrate the effectiveness of the developed algorithms. It is evident from these numerical results that the newly developed approaches are capable of solving problems with a wide variety of structures and complexity levels. Since implementations of the algorithms are publicly available, this monograph is full of examples showing how to use them and how to choose the most efficient ones, depending on the nature of the problem being solved. Therefore, many specialists, students, researchers, engineers, economists, computer scientists, operations researchers, and others will find this book interesting and helpful.
This work describes theoretical results, and practical improvements to the DIRECT Algorithm, a direct search global optimization algorithm for bound-constrained problems. We rigorously show that a sub-sequence of the points sampled by the algorithm satisfy first order necessary conditions for both smooth and non-smooth problems. We show linear convergence of the algorithm for linear problems, and demonstrate why our analysis cannot be extended to more general problems. We analyze a parameter of DIRECT, and show that it negatively affects the performance of the algorithm. A modified version of the DIRECT is introduced. Test examples are used to demonstrate the effectiveness of the modified algorithm. We apply DIRECT to six well-field optimization problems from the literature. We collect data on the problems with DIRECT, and utilize statistical methods to glean information from the data about the well-field problems.
This book provides a unified and insightful treatment of deterministic global optimization. It introduces theoretical and algorithmic advances that address the computation and characterization of global optima, determine valid lower and upper bounds on the global minima and maxima, and enclose all solutions of nonlinear constrained systems of equations. Among its special features, the book: Introduces the fundamentals of deterministic global optimization; Provides a thorough treatment of decomposition-based global optimization approaches for biconvex and bilinear problems; Covers global optimization methods for generalized geometric programming problems Presents in-depth global optimization algorithms for general twice continuously differentiable nonlinear problems; Provides a detailed treatment of global optimization methods for mixed-integer nonlinear problems; Develops global optimization approaches for the enclosure of all solutions of nonlinear constrained systems of equations; Includes many important applications from process design, synthesis, control, and operations, phase equilibrium, design under uncertainty, parameter estimation, azeotrope prediction, structure prediction in clusters and molecules, protein folding, and peptide docking. Audience: This book can be used as a textbook in graduate-level courses and as a desk reference for researchers in all branches of engineering and applied science, applied mathematics, industrial engineering, operations research, computer science, economics, computational chemistry and molecular biology.
This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods. Each of the main algorithms in the text is described in pseudocode, and a collection of MATLAB codes is available. Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.
This volume contains a thorough overview of the rapidly growing field of global optimization, with chapters on key topics such as complexity, heuristic methods, derivation of lower bounds for minimization problems, and branch-and-bound methods and convergence. The final chapter offers both benchmark test problems and applications of global optimization, such as finding the conformation of a molecule or planning an optimal trajectory for interplanetary space travel. An appendix provides fundamental information on convex and concave functions. Intended for Ph.D. students, researchers, and practitioners looking for advanced solution methods to difficult optimization problems. It can be used as a supplementary text in an advanced graduate-level seminar.
Simplicial Global Optimization is centered on deterministic covering methods partitioning feasible region by simplices. This book looks into the advantages of simplicial partitioning in global optimization through applications where the search space may be significantly reduced while taking into account symmetries of the objective function by setting linear inequality constraints that are managed by initial partitioning. The authors provide an extensive experimental investigation and illustrates the impact of various bounds, types of subdivision, strategies of candidate selection on the performance of algorithms. A comparison of various Lipschitz bounds over simplices and an extension of Lipschitz global optimization with-out the Lipschitz constant to the case of simplicial partitioning is also depicted in this text. Applications benefiting from simplicial partitioning are examined in detail such as nonlinear least squares regression and pile placement optimization in grillage-type foundations. Researchers and engineers will benefit from simplicial partitioning algorithms such as Lipschitz branch and bound, Lipschitz optimization without the Lipschitz constant, heuristic partitioning presented. This book will leave readers inspired to develop simplicial versions of other algorithms for global optimization and even use other non-rectangular partitions for special applications.
This book begins with a concentrated introduction into deterministic global optimization and moves forward to present new original results from the authors who are well known experts in the field. Multiextremal continuous problems that have an unknown structure with Lipschitz objective functions and functions having the first Lipschitz derivatives defined over hyperintervals are examined. A class of algorithms using several Lipschitz constants is introduced which has its origins in the DIRECT (DIviding RECTangles) method. This new class is based on an efficient strategy that is applied for the search domain partitioning. In addition a survey on derivative free methods and methods using the first derivatives is given for both one-dimensional and multi-dimensional cases. Non-smooth and smooth minorants and acceleration techniques that can speed up several classes of global optimization methods with examples of applications and problems arising in numerical testing of global optimization algorithms are discussed. Theoretical considerations are illustrated through engineering applications. Extensive numerical testing of algorithms described in this book stretches the likelihood of establishing a link between mathematicians and practitioners. The authors conclude by describing applications and a generator of random classes of test functions with known local and global minima that is used in more than 40 countries of the world. This title serves as a starting point for students, researchers, engineers, and other professionals in operations research, management science, computer science, engineering, economics, environmental sciences, industrial and applied mathematics to obtain an overview of deterministic global optimization.
The vast majority of important applications in science, engineering and applied science are characterized by the existence of multiple minima and maxima, as well as first, second and higher order saddle points. The area of Deterministic Global Optimization introduces theoretical, algorithmic and computational ad vances that (i) address the computation and characterization of global minima and maxima, (ii) determine valid lower and upper bounds on the global minima and maxima, and (iii) address the enclosure of all solutions of nonlinear con strained systems of equations. Global optimization applications are widespread in all disciplines and they range from atomistic or molecular level to process and product level representations. The primary goal of this book is three fold : first, to introduce the reader to the basics of deterministic global optimization; second, to present important theoretical and algorithmic advances for several classes of mathematical prob lems that include biconvex and bilinear; problems, signomial problems, general twice differentiable nonlinear problems, mixed integer nonlinear problems, and the enclosure of all solutions of nonlinear constrained systems of equations; and third, to tie the theory and methods together with a variety of important applications.
This book will present the papers delivered at the first U.S. conference devoted exclusively to global optimization and will thus provide valuable insights into the significant research on the topic that has been emerging during recent years. Held at Princeton University in May 1991, the conference brought together an interdisciplinary group of the most active developers of algorithms for global optimization in order to focus the attention of the mathematical programming community on the unsolved problems and diverse applications of this field. The main subjects addressed at the conference were advances in deterministic and stochastic methods for global optimization, parallel algorithms for global optimization problems, and applications of global optimization. Although global optimization is primarily a mathematical problem, it is relevant to several other disciplines, including computer science, applied mathematics, physical chemistry, molecular biology, statistics, physics, engineering, operations research, communication theory, and economics. Global optimization problems originate from a wide variety of mathematical models of real-world systems. Some of its applications are allocation and location problems and VLSI and data-base design problems. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.