Download Free Global Optimization Using Interval Analysis Book in PDF and EPUB Free Download. You can read online Global Optimization Using Interval Analysis and write the review.

Employing a closed set-theoretic foundation for interval computations, Global Optimization Using Interval Analysis simplifies algorithm construction and increases generality of interval arithmetic. This Second Edition contains an up-to-date discussion of interval methods for solving systems of nonlinear equations and global optimization problems. It expands and improves various aspects of its forerunner and features significant new discussions, such as those on the use of consistency methods to enhance algorithm performance. Provided algorithms are guaranteed to find and bound all solutions to these problems despite bounded errors in data, in approximations, and from use of rounded arithmetic.
Employing a closed set-theoretic foundation for interval computations, Global Optimization Using Interval Analysis simplifies algorithm construction and increases generality of interval arithmetic. This Second Edition contains an up-to-date discussion of interval methods for solving systems of nonlinear equations and global optimization problems. It expands and improves various aspects of its forerunner and features significant new discussions, such as those on the use of consistency methods to enhance algorithm performance. Provided algorithms are guaranteed to find and bound all solutions to these problems despite bounded errors in data, in approximations, and from use of rounded arithmetic.
Employing a closed set-theoretic foundation for interval computations, Global Optimization Using Interval Analysis simplifies algorithm construction and increases generality of interval arithmetic. This Second Edition contains an up-to-date discussion of interval methods for solving systems of nonlinear equations and global optimization problems. It expands and improves various aspects of its forerunner and features significant new discussions, such as those on the use of consistency methods to enhance algorithm performance. Provided algorithms are guaranteed to find and bound all solutions to these problems despite bounded errors in data, in approximations, and from use of rounded arithmetic.
An update on the author's previous books, this introduction to interval analysis provides an introduction to INTLAB, a high-quality, comprehensive MATLAB toolbox for interval computations, making this the first interval analysis book that does with INTLAB what general numerical analysis texts do with MATLAB.
Employing a closed set-theoretic foundation for interval computations, Global Optimization Using Interval Analysis simplifies algorithm construction and increases generality of interval arithmetic. This Second Edition contains an up-to-date discussion of interval methods for solving systems of nonlinear equations and global optimization problems. It expands and improves various aspects of its forerunner and features significant new discussions, such as those on the use of consistency methods to enhance algorithm performance. Provided algorithms are guaranteed to find and bound all solutions to these problems despite bounded errors in data, in approximations, and from use of rounded arithmetic.
Papers from a February 1994 international workshop held in El Paso, Texas, survey industrial applications of numerical analysis with automatic result verification, and of interval representation of data. After an introductory chapter explaining the content of the papers in terminology accessible to mathematically literate graduate students, chapters describe applications such as economic input-output models; quality control in manufacturing design; and medical expert systems, focusing on dealing with problems such as overestimation. Other topics include branch and bound algorithms for global optimization; fuzzy logic; and constraint propagation. For students and researchers interested in automatic result verification. Annotation copyright by Book News, Inc., Portland, OR
This book treats an important set of techniques that provide a mathematically rigorous and complete error analysis for computational results. It shows that interval analysis provides a powerful set of tools with direct applicability to important problems in scientific computing.
Mathematical Programming has been of significant interest and relevance in engineering, an area that is very rich in challenging optimization problems. In particular, many design and operational problems give rise to nonlinear and mixed-integer nonlinear optimization problems whose modeling and solu tion is often nontrivial. Furthermore, with the increased computational power and development of advanced analysis (e. g. , process simulators, finite element packages) and modeling systems (e. g. , GAMS, AMPL, SPEEDUP, ASCEND, gPROMS), the size and complexity of engineering optimization models is rapidly increasing. While the application of efficient local solvers (nonlinear program ming algorithms) has become widespread, a major limitation is that there is often no guarantee that the solutions that are generated correspond to global optima. In some cases finding a local solution might be adequate, but in others it might mean incurring a significant cost penalty, or even worse, getting an incorrect solution to a physical problem. Thus, the need for finding global optima in engineering is a very real one. It is the purpose of this monograph to present recent developments of tech niques and applications of deterministic approaches to global optimization in engineering. The present monograph is heavily represented by chemical engi neers; and to a large extent this is no accident. The reason is that mathematical programming is an active and vibrant area of research in chemical engineering. This trend has existed for about 15 years.
This book begins with a concentrated introduction into deterministic global optimization and moves forward to present new original results from the authors who are well known experts in the field. Multiextremal continuous problems that have an unknown structure with Lipschitz objective functions and functions having the first Lipschitz derivatives defined over hyperintervals are examined. A class of algorithms using several Lipschitz constants is introduced which has its origins in the DIRECT (DIviding RECTangles) method. This new class is based on an efficient strategy that is applied for the search domain partitioning. In addition a survey on derivative free methods and methods using the first derivatives is given for both one-dimensional and multi-dimensional cases. Non-smooth and smooth minorants and acceleration techniques that can speed up several classes of global optimization methods with examples of applications and problems arising in numerical testing of global optimization algorithms are discussed. Theoretical considerations are illustrated through engineering applications. Extensive numerical testing of algorithms described in this book stretches the likelihood of establishing a link between mathematicians and practitioners. The authors conclude by describing applications and a generator of random classes of test functions with known local and global minima that is used in more than 40 countries of the world. This title serves as a starting point for students, researchers, engineers, and other professionals in operations research, management science, computer science, engineering, economics, environmental sciences, industrial and applied mathematics to obtain an overview of deterministic global optimization.
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.