Download Free Global Existence Of Small Classical Solutions To Nonlinear Schrodinger Equations Book in PDF and EPUB Free Download. You can read online Global Existence Of Small Classical Solutions To Nonlinear Schrodinger Equations and write the review.

This volume presents recent progress in the theory of nonlinear dispersive equations, primarily the nonlinear Schrodinger (NLS) equation. The Cauchy problem for defocusing NLS with critical nonlinearity is discussed. New techniques and results are described on global existence and properties of solutions with Large Cauchy data. Current research in harmonic analysis around Strichartz's inequalities and its relevance to nonlinear PDE is presented and several topics in NLS theory on bounded domains are reviewed. Using the NLS as an example, the book offers comprehensive insight on current research related to dispersive equations and Hamiltonian PDEs.
Evolution equations of hyperbolic or more general p-evolution type form an active field of current research. This volume aims to collect some recent advances in the area in order to allow a quick overview of ongoing research. The contributors are first rate mathematicians. This collection of research papers is centred around parametrix constructions and microlocal analysis; asymptotic constructions of solutions; energy and dispersive estimates; and associated spectral transforms. Applications concerning elasticity and general relativity complement the volume. The book gives an overview of a variety of ongoing current research in the field and, therefore, allows researchers as well as students to grasp new aspects and broaden their understanding of the area. ​
1. Fourier multiplier, function space [symbol]. 1.1. Schwartz space, tempered distribution, Fourier transform. 1.2. Fourier multiplier on L[symbol]. 1.3. Dyadic decomposition, Besov and Triebel spaces. 1.4. Embeddings on X[symbol]. 1.5. Differential-difference norm on [symbol]. 1.6. Homogeneous space [symbol] 1.7. Bessel (Riesz) potential spaces [symbol]. 1.8. Fractional Gagliardo-Nirenberg inequalities -- 2. Navier-Stokes equation. 2.1. Introduction. 2.2. Time-space estimates for the heat semi-group. 2.3. Global well-posedness in L[symbol] of NS in 2D. 2.4. Well-posedness in L[symbol] of NS in higher dimensions. 2.5. Regularity of solutions for NS -- 3. Strichartz estimates for linear dispersive equations. 3.1. [symbol] estimates for the dispersive semi-group. 3.2. Strichartz inequalities : dual estimate techniques. 3.3. Strichartz estimates at endpoints -- 4. Local and global wellposedness for nonlinear dispersive equations. 4.1. Why is the Strichartz estimate useful. 4.2. Nonlinear mapping estimates in Besov spaces. 4.3. Critical and subcritical NLS in H[symbol]. 4.4. Global wellposedness of NLS in L[symbol] and H[symbol]. 4.5. Critical and subcritical NLKG in H[symbol]. 5. The low regularity theory for the nonlinear dispersive equations. 5.1. Bourgain space. 5.2. Local smoothing effect and maximal function estimates. 5.3. Bilinear estimates for KdV and local well-posedness. 5.4. Local well-posedness for KdV in H[symbol]. 5.5. I-method. 5.6. Schrodinger equation with derivative. 5.7. Some other dispersive equations -- 6. Frequency-uniform decomposition techniques. 6.1. Why does the frequency-uniform decomposition work. 6.2. Frequency-uniform decomposition, modulation spaces. 6.3. Inclusions between Besov and modulation spaces. 6.4. NLS and NLKG in modulation spaces. 6.5. Derivative nonlinear Schrodinger equations -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations. 7.1. Nother's theorem. 7.2. Invariance and conservation law. 7.3. Virial identity and Morawetz inequality. 7.4. Morawetz' interaction inequality. 7.5. Scattering results for NLS -- 8. Boltzmann equation without angular cutoff. 8.1. Models for collisions in kinetic theory. 8.2. Basic surgery tools for the Boltzmann operator. 8.3. Properties of Boltzmann collision operator without cutoff. 8.4 Regularity of solutions for spatially homogeneous case
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
This book provides a self-contained presentation of classical and new methods for studying wave phenomena that are related to the existence and stability of solitary and periodic travelling wave solutions for nonlinear dispersive evolution equations. Simplicity, concrete examples, and applications are emphasized throughout in order to make the material easily accessible. The list of classical nonlinear dispersive equations studied include Korteweg-de Vries, Benjamin-Ono, and Schrodinger equations. Many special Jacobian elliptic functions play a role in these examples. The author brings the reader to the forefront of knowledge about some aspects of the theory and motivates future developments in this fascinating and rapidly growing field. The book can be used as an instructive study guide as well as a reference by students and mature scientists interested in nonlinear wave phenomena.
Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.
The theory of nonlinear wave equations in the absence of shocks began in the 1960s. Despite a great deal of recent activity in this area, some major issues remain unsolved, such as sharp conditions for the global existence of solutions with arbitrary initial data, and the global phase portrait in the presence of periodic solutions and traveling waves. This book, based on lectures presented by the author at George Mason University in January 1989, seeks to present the sharpest results to date in this area. The author surveys the fundamental qualitative properties of the solutions of nonlinear wave equations in the absence of boundaries and shocks. These properties include the existence and regularity of global solutions, strong and weak singularities, asymptotic properties, scattering theory and stability of solitary waves. Wave equations of hyperbolic, Schrodinger, and KdV type are discussed, as well as the Yang-Mills and the Vlasov-Maxwell equations. The book offers readers a broad overview of the field and an understanding of the most recent developments, as well as the status of some important unsolved problems. Intended for mathematicians and physicists interested in nonlinear waves, this book would be suitable as the basis for an advanced graduate-level course.