Download Free Global Change And Remote Sensing Book in PDF and EPUB Free Download. You can read online Global Change And Remote Sensing and write the review.

Remote Sensing plays a key role in monitoring the various manifestations of global climate change. It is used routinely in the assessment and mapping of biodiversity over large areas, in the monitoring of changes to the physical environment, in assessing threats to various components of natural systems, and in the identification of priority areas for conservation. This book presents the fundamentals of remote sensing technology, but rather than containing lengthy explanations of sensor specifications and operation, it concentrates instead on the application of the technology to key environmental systems. Each system forms the basis of a separate chapter, and each is illustrated by real world case studies and examples. Readership The book is intended for advanced undergraduate and graduate students in earth science, environmental science, or physical geography taking a course in environmental remote sensing. It will also be an invaluable reference for environmental scientists and managers who require an overview of the use of remote sensing in monitoring and mapping environmental change at regional and global scales. Additional resources for this book can be found at: http://www.wiley.com/go/purkis/remote.
Offers insights into the Soviet and Russian experience in remote sensing, places them in an international context, and thoroughly reviews the Russian scientific aircraft and satellite instrumentation for the first time. Discusses the key problems of global environmental change and the role of satell
Global Biomass Burning provides a convenient and current reference on such topics as the remote sensing of biomass burning from space, the geographical distribution of burning; the combustion products of burning in tropical, temperate, and boreal ecosystems; burning as a global source of atmospheric gases and particulates; the impact of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions."--Pub. desc.
Remote Sensing plays a key role in monitoring the various manifestations of global climate change. It is used routinely in the assessment and mapping of biodiversity over large areas, in the monitoring of changes to the physical environment, in assessing threats to various components of natural systems, and in the identification of priority areas for conservation. This book presents the fundamentals of remote sensing technology, but rather than containing lengthy explanations of sensor specifications and operation, it concentrates instead on the application of the technology to key environmental systems. Each system forms the basis of a separate chapter, and each is illustrated by real world case studies and examples. Readership The book is intended for advanced undergraduate and graduate students in earth science, environmental science, or physical geography taking a course in environmental remote sensing. It will also be an invaluable reference for environmental scientists and managers who require an overview of the use of remote sensing in monitoring and mapping environmental change at regional and global scales. Additional resources for this book can be found at: http://www.wiley.com/go/purkis/remote.
Space-based sensors are giving us an ever-closer and more comprehensive look at the earth's surface; they also have the potential to tell us about human activity. This volume examines the possibilities for using remote sensing technology to improve understanding of social processes and human-environment interactions. Examples include deforestation and regrowth in Brazil, population-environment interactions in Thailand, ancient and modern rural development in Guatemala, and urbanization in the United States, as well as early warnings of famine and disease outbreaks. The book also provides information on current sources of remotely sensed data and metadata and discusses what is involved in establishing effective collaborative efforts between scientists working with remote sensing technology and those working on social and environmental issues.
Global climate change is a certainty. The Earth's climate has never remained static for long and the prospect for human-accelerated climate change in the near future appears likely. Freshwater systems are intimately connected to climate in several ways: they may influence global atmospheric processes affecting climate; they may be sensitive early indicators of climate change because they integrate the atmospheric and terrestrial events occurring in their catchments; and, of course, they will be affected by climate change. An improved predictive understanding of environmental effects on pattern and process in freshwater ecosystems will be invaluable as a baseline upon which to build sound protection and management policies for fresh waters. This book represents an early step towards this improved understanding. The contributors accepted the challenge to assume global warming of 2-5oC in the next century. They then explored the implications of this scenario on various freshwater ecosystems and processes. To provide a broader perspective, Firth and Fisher included several chapters which do not deal expressly with freshwater ecosystems, but rather discuss climate change in terms of causes and mechanisms, implications for water resources, and the use of remote sensing as a tool for expanding studies from local to global scale.
Numerous studies report that ultraviolet (UV) radiation is harmful to living organisms and detrimental to human health. Growing concerns regarding the increased levels of UV-B radiation that reach the earth's surface have led to the development of ground- and space-based measurement programs. Further study is needed on the measurement, modeling, and effects of UV radiation. The chapters of this book describe the research conducted across the globe over the past three decades in the areas of: (1) current and predicted levels of UV radiation and its associated impact on ecosystems and human health, as well as economic and social implications; (2) new developments in UV instrumentation, advances in calibration (ground- and satellite-based), measurement methods, modeling efforts, and their applications; and (3) the effects of global climate change on UV radiation. Dr. Wei Gao is a Senior Research Scientist and the Director of the USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University. Dr. Gao is a SPIE fellow and serves as the Editor-in-Chief for the Journal of Applied Remote Sensing. Dr. Daniel L. Schmoldt is the National Program Leader for instrumentation and sensors at the National Institute of Food and Agriculture (NIFA) of the U.S. Department of Agriculture. Dr. Schmoldt served as joint Editor-in-Chief of the journal, Computers & Electronics in Agriculture, from 1997 to 2004. Dr. James R. Slusser retired in 2007 from the USDA UV-B Monitoring and Research Program at Colorado State University. He was active in the Society of Photo-Optical Instrumentation Engineers, the American Geophysical Union, and the American Meteorological Society. Dr. Slusser is currently pursuing his interests in solar energy and atmospheric transmission.
This volume gathers a variety of applications for remote sensing of vegetation health (VH) and concretely shows how this information can be used in service of ending hunger and of ensuring future food security. In this book’s ten chapters, Dr. Felix Kogan, one of the most prolific scientists in this sphere, shows how a new VH method, designed from operational environmental satellite data, can be used to provide advanced predictions of agricultural losses, helping to enhance food security and reducing the number of hungry people. Topics covered include the scientific basis of the VH method, drought monitoring, prediction of short-term agricultural yield and crop insurance, and impacts of long term climate variability and change on food security. A short discussion on VH for human health-related topics such as detection and prediction of malaria and fire risk is included as well.
A balanced review of differing approaches based on remote sensing tools and methods to assess and monitor biodiversity, carbon and water cycles, and the energy balance of terrestrial ecosystem. Earth Observation of Ecosystem Services highlights the advantages Earth observation technologies offer for quantifying and monitoring multiple ecosystem functions and services. It provides a multidisciplinary reference that expressly covers the use of remote sensing for quantifying and monitoring multiple ecosystem services. Rather than exhaustively cover all possible ecosystem services, this book takes a global look at the most relevant remote sensing approaches to estimate key ecosystem services from satellite data. Structured in four main sections, it covers carbon cycle, biodiversity, water cycle, and energy balance. Each section contains a review of conceptual and empirical methods, techniques, and case studies linking remotely sensed data to the biophysical variables and ecosystem functions associated with key ecosystem services. The book identifies relevant issues and challenges of assessment, presents cutting-edge sensing techniques, uses globally implemented tools to quantify ecosystem functions, and presents examples of successful monitoring programs. Covering recent developments undertaken on the global and national stage from Earth observation satellite data, it includes valuable lessons and recommendations and novel ways to improve current global monitoring systems. The book delineates the use of Earth observation data so that it can be used to quantify, map, value, and manage the valuable goods and services that ecosystems provide to societies around the world.
This is a book about how ecologists can integrate remote sensing and GIS in their daily work. It will allow ecologists to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. All practical examples in this book rely on OpenSource software and freely available data sets. Quantum GIS (QGIS) is introduced for basic GIS data handling, and in-depth spatial analytics and statistics are conducted with the software packages R and GRASS. Readers will learn how to apply remote sensing within ecological research projects, how to approach spatial data sampling and how to interpret remote sensing derived products. The authors discuss a wide range of statistical analyses with regard to satellite data as well as specialised topics such as time-series analysis. Extended scripts on how to create professional looking maps and graphics are also provided. This book is a valuable resource for students and scientists in the fields of conservation and ecology interested in learning how to get started in applying remote sensing in ecological research and conservation planning.