Download Free Glass Science And Technology Book in PDF and EPUB Free Download. You can read online Glass Science And Technology and write the review.

This book provides a concise and inexpensive introduction for an undergraduate course in glass science and technology. The level of the book has deliberately been maintained at the introductory level to avoid confusion of the student by inclusion of more advanced material, and is unique in that its text is limited to the amount suitable for a one term course for students in materials science, ceramics or inorganic chemistry. The contents cover the fundamental topics of importance in glass science and technology, including glass formation, crystallization, phase separation and structure of glasses. Additional chapters discuss the most important properties of glasses, including discussion of physical, optical, electrical, chemical and mechanical properties. A final chapter provides an introduction to a number of methods used to form technical glasses, including glass sheet, bottles, insulation fibre, optical fibres and other common commercial products. In addition, the book contains discussion of the effects of phase separation and crystallization on the properties of glasses, which is neglected in other texts. Although intended primarily as a textbook, Introduction to Glass Science and Technology will also be invaluable to the engineer or scientist who desires more knowledge regarding the formation, properties and production of glass.
This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.
In terms of chemical composition, silica glass is the simplest amorphous substance that has been commercially utilized in many fields of application in a number of industrial branches, thanks to its physico-chemical properties.The present volume gives a comprehensive overview on the latest developments in glass technology. The influence of genetic types of raw materials on the choice of melting technology is discussed. Phase transformations of quartz-silica glass and the influence of the impurities of melting furnaces and furnace material is examined. The quartz raw materials suitable for the manufacture of clear, opaque and synthetic silica glasses, various manufacturing processes, the physico-chemical properties of silica glasses and their utilization in technological practice are reviewed in detail.The book provides a wealth of detailed information on the properties and use of silica glass which will be of considerable interest to workers in the glass industry, including those in research and development, as well as to people in the fields of electronics, electrical engineering, communication technology, optics and the chemical, power engineering and metallurgical industries. It will also be a useful information supplement on the properties and applications of silica glass for students in technical schools and universities.
Glass: Science and Technology, Volume 5: Elasticity and Strength in Glasses covers the scientific and engineering aspects of glass elasticity and strength. This volume is organized into six chapters and begins with the examination of the elastic properties of vitreous silica and silicate glasses, including those that contain moderate amounts of other network formers. The following chapters describe the fracture mechanics and inelastic deformation of oxide, metallic, and polymeric glasses. The discussion then shifts to the concept of glass strengthening approaches and some technologies of significant practical application to glasses. A chapter explores the process of thermal tempering of glass, including the physics, theories, and standards of the process. The last chapter focuses on the practical aspects of chemical strengthening and the mechanical and physical properties of the obtained glass. This book is of great benefit to glass scientists and researchers.
Presenting the fundamental topics in glass science and technology, this concise introduction includes glass formation, crystallization, and phase separation. Glass structure models, with emphasis on the oxygen balance method, are presented in detail. Several chapters discuss the viscosity, density, thermal expansion, and mechanical properties of glasses as well as their optical and magnetic behavior and the diffusion of ions, atoms, and molecules and their effect on electrical conductivity, chemical durability, and other related behavior. In addition to the effects of atomic structure on the properties of glasses, the effects of phase separation, crystallization, and water content, which are neglected in most texts, are discussed extensively. Glass technology is addressed in chapters dealing with the raw materials for producing glasses, batch calculations, and the melting and fining processes. The compositions, properties, and production of commercial glasses are also presented. A chapter is devoted to the use of thermal analysis in the study of glasses, including their crystallization behavior. This expanded, third edition, includes new chapters on doped vitreous silica and the, often overlooked, role of halides on glass formation and properties. In addition, solutions to all of the exercises at the ends of chapters are included for the first time in this edition. This introductory text is ideal for undergraduates in materials science, ceramics, or inorganic chemistry. It will also be useful to the graduate student, engineer, or scientist seeking basic knowledge of the formation, properties, and production of glass in support of their work.
Glass-ceramic materials share many properties with both glass and more traditional crystalline ceramics. This new edition examines the various types of glass-ceramic materials, the methods of their development, and their countless applications. With expanded sections on biomaterials and highly bioactive products (i.e., Bioglass and related glass ceramics), as well as the newest mechanisms for the development of dental ceramics and theories on the development of nano-scaled glass-ceramics, here is a must-have guide for ceramic and materials engineers, managers, and designers in the ceramic and glass industry.
Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications provides a detailed overview of fiber, float and container glass technology with special emphasis on energy- and environmentally-friendly compositions, applications and manufacturing practices which have recently become available and continue to emerge. Energy-friendly compositions are variants of incumbent fiberglass and glass compositions that are obtained by the reformulation of incumbent compositions to reduce the viscosity and thereby the energy demand. Environmentally-friendly compositions are variants of incumbent fiber, float and container glass compositions that are obtained by the reformulation of incumbent compositions to reduce environmentally harmful emissions from their melts. Energy- and environmentally-friendly compositions are expected to become a key factor in the future for the fiberglass and glass industries. This book consists of two complementary sections: continuous glass fiber technology and soda-lime-silica glass technology. Important topics covered include: o Commercial and experimental compositions and products o Design of energy- and environmentally-friendly compositions o Emerging glass melting technologies including plasma melting o Fiberglass composite design and engineering o Emerging fiberglass applications and markets Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications is written for researchers and engineers seeking a modern understanding of glass technology and the development of future products that are more energy- and environmentally-friendly than current products.
Glass technologists are fascinated by glass; explora tion as well as application of glass is expanding and the influx of documentation is bewildering. There were about 200 papers on just semi conduction in glasses in 1970 and one has to scan about 200 papers a month to sense the pulse of glass science. Yet there are many in industry and education in science or engineering who require or wish to have coher ent, comprehensive and contemporary information on this exciting material "glass. " The Tutorial Symposium offered as an Introduction to Glass Science in Alfred represents an earnest attempt to ful fill this need. It has been designed to provide both broad and technical instruction for participants and readers who are not specialists. Glass is not only a material but a condition of matter: the vitreous state. The topic, there fore, is introduced by a careful consideration of the nature of glass, or the vitreous state. The universality of the vitreous state is now generally recognized: not just a few, but very many structures can be obtained without appreciable crystallization. There is no restricted family of struc tures characteristic of glass formation: as long as crys tallization is avoided, every liquid will solidify to a non crystalline sUbstance. Structural analysis in each case is now to be postulated and has become increasingly successful. The Alfred "Introduction to Glass Science" offers a repre sentative overview of methods and results.
In this book, some recent advances in glass science and technology are collected. In the first part, the structure and crystallization of innovative glass compositions are analysed. In the second part, innovative applications are described from the use of glass in optical devices and lasers to fibres in composites, micropatterned components in sensors and microdevices, beads in building walls and sealing in solid oxide fuel cells.
Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. - Clearly develops fundamental concepts and the basics of glass science and glass chemistry - Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses - Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more - Concludes chapters with problem sets and suggested readings to facilitate self-study