Download Free Gis Static Storm Model Development Book in PDF and EPUB Free Download. You can read online Gis Static Storm Model Development and write the review.

Rainfall runoff modeling at a watershed scale requires the definition of the storm event and of the conveying characteristics of the watershed. This research project focuses on the geographic definition of the storm event, that is, on the spatial distribution of precipitation over the watershed. As the watershed size increases, the likelihood that a storm will cover the entire watershed decreases, and it becomes necessary to identify which parts of the watershed are affected by the storm and which are not. Traditionally, precipitation estimates have been based on precipitation records obtained at discrete points (i.e., precipitation stations), which led to depth-duration-frequency (DDF) equations or curves. An estimate of the area covered by the storm event, however, has not been included in the analysis, and it has been customary to assume it uniformly distributed over the entire watershed, regardless of its size. Thus far, no model has been developed to map the area of the watershed that is covered by the storm, as well as to determine the spatial distribution of precipitation over this area. Use of NEXRAD precipitation data, however, will allow the development of a model and geographic-information-systems (GIS) based application that relaxes the assumption of uniformly distributed precipitation and estimates the storm precipitation distribution within the watershed.
This text presents papers from the 18th EARSeL Symposium, held in Enschede, Netherlands. The papers are followed by application-oriented contributions on specific themes such as land use and nature management; water quality and pollution monitoring; and coastal zone management.
Integrating Information with GI Technology examines the components necessary for building infrastructure to support the panoly of Geographic Information (GI) research and services. These include novel approaches to two- and three-dimensional spatial analysis and spatio-temporal modelling. The book establishes the case for the Web as the technologic
Computer science provides a powerful tool that was virtually unknown three generations ago. Some of the classical fields of knowledge are geodesy (surveying), cartography, and geography. Electronics have revolutionized geodetic methods. Cartography has faced the dominance of the computer that results in simplified cartographic products. All three fields make use of basic components such as the Internet and databases. The Springer Handbook of Geographic Information is organized in three parts, Basics, Geographic Information and Applications. Some parts of the basics belong to the larger field of computer science. However, the reader gets a comprehensive view on geographic information because the topics selected from computer science have a close relation to geographic information. The Springer Handbook of Geographic Information is written for scientists at universities and industry as well as advanced and PhD students.
As human activity makes a greater impact on the environment, sustainability becomes an increasingly imperative goal. With the assistance of current technological innovations, environmental systems can be better preserved. Oceanographic and Marine Cross-Domain Data Management for Sustainable Development is a pivotal resource for the latest research on the collection of environmental data for sustainability initiatives and the associate challenges with this data acquisition. Highlighting various technological, scientific, semantic, and semiotic perspectives, this book is ideally designed for researchers, technology developers, practitioners, students, and professionals in the field of environmental science and technology.
Features a five part structure covering: Foundations; Principles; Techniques; Analysis; and Management and Policy. This book includes chapters on Distributed GIS, Map Production, Geovisualization, Modeling, and Managing GIS. It offers coverage of such topics as: GIS and the New World Order; security, health and well being; and the greening of GIS.
“Green Stormwater Infrastructure for Sustainable Urban and Rural Development” offers some of the latest international scientific and practitioner findings around the adaptation of urban, rural and transportation infrastructures to climate change by sustainable water management. This book addresses the main gaps in the up-to-date literature and provides the reader with a holistic view, ranging from a strategic and multiscale planning, implementation and decision-making angle down to the engineering details for the design, construction, operation and maintenance of green stormwater techniques such as sustainable drainage systems (SuDS) and stormwater control measures (SCMs). This book is particularly recommended for a wide audience of readers, such as academics/researchers and students in the fields of architecture and landscaping, engineering, environmental and natural sciences, social and physical geography and urban and territorial planning. This book is also a resource for practitioners and professionals developing their work in architecture studios, engineering companies, local and regional authorities, water and environmental industries, infrastructure maintenance, regulators, planners, developers and legislators.
The book addresses the perceived need for a publication with looks at both, climate smart technologies and the integration of renewable energy and energy efficiency in mitigation and adaptation responses. Based on a set of papers submitted as part of the fifth on-line climate conference (CLIMATE 2012) and a major conference on renewable energy on island States held in Mauritius in 2012, the book provides a wealth of information on climate change strategies and the role of smart technologies. The book has been produced in the context of the project "Small Developing Island Renewable Energy Knowledge and Technology Transfer Network" (DIREKT), funded by the ACP Science and Technology Programme, an EU programme for cooperation between the European Union and the ACP region. ​
In recent years 3D geo-information has become an important research area due to the increased complexity of tasks in many geo-scientific applications, such as sustainable urban planning and development, civil engineering, risk and disaster management and environmental monitoring. Moreover, a paradigm of cross-application merging and integrating of 3D data is observed. The problems and challenges facing today’s 3D software, generally application-oriented, focus almost exclusively on 3D data transportability issues – the ability to use data originally developed in one modelling/visualisation system in other and vice versa. Tools for elaborated 3D analysis, simulation and prediction are either missing or, when available, dedicated to specific tasks. In order to respond to this increased demand, a new type of system has to be developed. A fully developed 3D geo-information system should be able to manage 3D geometry and topology, to integrate 3D geometry and thematic information, to analyze both spatial and topological relationships, and to present the data in a suitable form. In addition to the simple geometry types like point line and polygon, a large variety of parametric representations, freeform curves and surfaces or sweep shapes have to be supported. Approaches for seamless conversion between 3D raster and 3D vector representations should be available, they should allow analysis of a representation most suitable for a specific application.