Download Free Gian Carlo Rota On Combinatorics Book in PDF and EPUB Free Download. You can read online Gian Carlo Rota On Combinatorics and write the review.

. This volume will be of interest to experts as well as beginning graduate students (particularly as a source of research problems).
Gian-Carlo Rota was born in Vigevano, Italy, in 1932. He died in Cambridge, Mas sachusetts, in 1999. He had several careers, most notably as a mathematician, but also as a philosopher and a consultant to the United States government. His mathe matical career was equally varied. His early mathematical studies were at Princeton (1950 to 1953) and Yale (1953 to 1956). In 1956, he completed his doctoral thesis under the direction of Jacob T. Schwartz. This thesis was published as the pa per "Extension theory of differential operators I", the first paper reprinted in this volume. Rota's early work was in analysis, more specifically, in operator theory, differ ential equations, ergodic theory, and probability theory. In the 1960's, Rota was motivated by problems in fluctuation theory to study some operator identities of Glen Baxter (see [7]). Together with other problems in probability theory, this led Rota to study combinatorics. His series of papers, "On the foundations of combi natorial theory", led to a fundamental re-evaluation of the subject. Later, in the 1990's, Rota returned to some of the problems in analysis and probability theory which motivated his work in combinatorics. This was his intention all along, and his early death robbed mathematics of his unique perspective on linkages between the discrete and the continuous. Glimpses of his new research programs can be found in [2,3,6,9,10].
Gian-Carlo Rota was one of the most original and colourful mathematicians of the 20th century. His work on the foundations of combinatorics focused on the algebraic structures that lie behind diverse combinatorial areas, and created a new area of algebraic combinatorics. Written by two of his former students, this book is based on notes from his influential graduate courses and on face-to-face discussions. Topics include sets and valuations, partially ordered sets, distributive lattices, partitions and entropy, matching theory, free matrices, doubly stochastic matrices, Moebius functions, chains and antichains, Sperner theory, commuting equivalence relations and linear lattices, modular and geometric lattices, valuation rings, generating functions, umbral calculus, symmetric functions, Baxter algebras, unimodality of sequences, and location of zeros of polynomials. Many exercises and research problems are included, and unexplored areas of possible research are discussed. A must-have for all students and researchers in combinatorics and related areas.
Indiscrete Thoughts gives a glimpse into a world that has seldom been described - that of science and technology as seen through the eyes of a mathematician. The era covered by this book, 1950 to 1990, was surely one of the golden ages of science and of the American university. Cherished myths are debunked along the way as Gian-Carlo Rota takes pleasure in portraying, warts and all, some of the great scientific personalities of the period. Rota is not afraid of controversy. Some readers may even consider these essays indiscreet. This beautifully written book is destined to become an instant classic and the subject of debate for decades to come.
The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.
This is a volume of essays and reviews that delightfully explores mathematics in all its moods — from the light and the witty, and humorous to serious, rational, and cerebral. These beautifully written articles from three great modern mathematicians will provide a source for supplemental reading for almost any math class. Topics include: logic, combinatorics, statistics, economics, artificial intelligence, computer science, and broad applications of mathematics. Readers will also find coverage of history and philosophy, including discussion of the work of Ulam, Kant, and Heidegger, among others.
This book, dedicated to the memory of Gian-Carlo Rota, is the result of a collaborative effort by his friends, students and admirers. Rota was one of the great thinkers of our times, innovator in both mathematics and phenomenology. I feel moved, yet touched by a sense of sadness, in presenting this volume of work, despite the fear that I may be unworthy of the task that befalls me. Rota, both the scientist and the man, was marked by a generosity that knew no bounds. His ideas opened wide the horizons of fields of research, permitting an astonishing number of students from all over the globe to become enthusiastically involved. The contagious energy with which he demonstrated his tremendous mental capacity always proved fresh and inspiring. Beyond his renown as gifted scientist, what was particularly striking in Gian-Carlo Rota was his ability to appreciate the diverse intellectual capacities of those before him and to adapt his communications accordingly. This human sense, complemented by his acute appreciation of the importance of the individual, acted as a catalyst in bringing forth the very best in each one of his students. Whosoever was fortunate enough to enjoy Gian-Carlo Rota's longstanding friendship was most enriched by the experience, both mathematically and philosophically, and had occasion to appreciate son cote de bon vivant. The book opens with a heartfelt piece by Henry Crapo in which he meticulously pieces together what Gian-Carlo Rota's untimely demise has bequeathed to science.
This volume surveys the development of combinatorics since 1930 by presenting in chronological order the fundamental results of the subject proved in over five decades of original papers by: T. van Aardenne-Ehrenfest.- R.L. Brooks.- N.G. de Bruijn.- G.F. Clements.- H.H. Crapo.- R.P. Dilworth.- J. Edmonds.- P. Erdös.- L.R. Ford, Jr.- D.R. Fulkerson.- D. Gale.- L. Geissinger.- I.J. Good.- R.L. Graham.- A.W. Hales.- P. Hall.- P.R. Halmos.- R.I. Jewett.- I. Kaplansky.- P.W. Kasteleyn.- G. Katona.- D.J. Kleitman.- K. Leeb.- B. Lindström.- L. Lovász.- D. Lubell.- C. St. J.A. Nash-Williams.- G. Pólya.-R. Rado.- F.P. Ramsey.- G.-C. Rota.- B.L. Rothschild.- H.J. Ryser.- C. Schensted.- M.P. Schützenberger.- R.P. Stanley.- G. Szekeres.- W.T. Tutte.- H.E. Vaughan.- H. Whitney.
Richard Stanley's two-volume basic introduction to enumerative combinatorics has become the standard guide to the topic for students and experts alike. This thoroughly revised second edition of Volume 1 includes ten new sections and more than 300 new exercises, most with solutions, reflecting numerous new developments since the publication of the first edition in 1986. The author brings the coverage up to date and includes a wide variety of additional applications and examples, as well as updated and expanded chapter bibliographies. Many of the less difficult new exercises have no solutions so that they can more easily be assigned to students. The material on P-partitions has been rearranged and generalized; the treatment of permutation statistics has been greatly enlarged; and there are also new sections on q-analogues of permutations, hyperplane arrangements, the cd-index, promotion and evacuation and differential posets.
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.