Download Free Getting To Know Semiconductors Book in PDF and EPUB Free Download. You can read online Getting To Know Semiconductors and write the review.

Getting to Know Semiconductors is a simple introductory text on semiconductors. First published in Russian, 150, 000 copies of the first edition were sold out immediately. This translated English version by two of Russia's foremost scientists in the field of semiconductors is now available.Clearly written in a simple and lively manner, this book presents the most important phenomena of semiconductor physics and devices.
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.
The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.
A definitive and up-to-date handbook of semiconductor devices Semiconductor devices, the basic components of integrated circuits, are responsible for the rapid growth of the electronics industry over the past fifty years. Because there is a growing need for faster and more complex systems for the information age, existing semiconductor devices are constantly being studied for improvement, and new ones are being continually invented. As a result, a large number of types and variations of devices are available in the literature. The Second Edition of this unique engineering guide continues to be the only available complete collection of semiconductor devices, identifying 74 major devices and more than 200 variations of these devices. As in the First Edition, the value of this text lies in its comprehensive, yet highly readable presentation and its easy-to-use format, making it suitable for a wide range of audiences. Essential information is presented for a quick, balanced overview Each chapter is designed to cover only one specific device, for easy and focused reference Each device is discussed in detail, always including its history, its structure, its characteristics, and its applications The Second Edition has been significantly updated with eight new chapters, and the material rearranged to reflect recent developments in the field. As such, it remains an ideal reference source for graduate students who want a quick survey of the field, as well as for practitioners and researchers who need quick access to basic information, and a valuable pragmatic handbook for salespeople, lawyers, and anyone associated with the semiconductor industry.
This book provides a unique account of the history of integrated circuit, the microelectronics industry and the people involved in the development of transistor and integrated circuit. In this richly illustrated account the author argues that the group of inventors was much larger than originally thought. This is a personal recollection providing the first comprehensive behind-the-scenes account of the history of the integrated circuit.
The book provides an overview of the fascinating spectrum of semiconductor physics, devices and applications, presented from a historical perspective. It covers the development of the subject from its inception in the early nineteenth century to the recent millennium. Written in a lively, informal style, it emphasizes the interaction between pure scientific push and commercial pull, on the one hand, and between basic physics, materials, and devices, on the other. It also sets the various device developments in the context of systems requirements and explains how such developments met wide ranging consumer demands. It is written so as to appeal to students at all levels in physics, electrical engineering, and materials science, to teachers, lecturers, and professionals working in the field, as well as to a non-specialist scientific readership.
Provides a modern introduction to semiconductor physics, presentingthe basic information necessary to understand semiconductors, alongwith some of the latest theories and developments. Based on theauthor's undergraduate course, this book bridges the gap betweenbasic subjects such as quantum mechanics and Maxwell's equationsand the fundamental processes determining the behaviour ofsemiconductors. Following a quantum mechanics approach this text ispredominantly aimed at scientists rather then engineers, and formsthe basis for the understanding of modern mesoscopic physics insemiconductors and quantum devices like resonant tunnelingdiodes. Rather than attempting to comprehensively cover all aspects ofsemiconductor physics, this text aims to cover the most importantand interesting aspects of this subject to scientists. Startingwith the development of semiconductor physics from basic quantummechanics, the text moves on to cover band structure and effectivemass theory, before covering electron-phonon coupling and chargetransport. It concludes with a chapter on optical transitions.Students will need some knowledge of quantum mechanics and solidstate although this is covered to some extent in the book. FEATURES * Concise introduction to the basics of semiconductor physics * Bridges the gap between fundamental subjects such as quantummechanics and Maxwell's equations and the processes determining thebehaviour of semiconductors * Describes semiconductor theory from a full quantum mechanicalapproach.An accessible introduction, avoiding reliance on grouptheory CONTENTS: Preface; Notation Conventions; Introduction; Electrons,nuclei and Hamiltonians; Band Structure; The k - p Approximation;Effective Mass Theory; The Crystal Lattice; Electron-phononCoupling; Charge Transport, Optical Transitions; Band Electrons inan Optical Field; Appendix A: The Hydrogen Atom; Appendix B: TheHarmonic Oscillator; Appendix C: Perturbation Theory; AppendixD:Tensors in Cubic Crystals; Appendix E: The Classical Limit;Appendix F: Some Fourier Transforms; Appendix G: Exercises;Bibliography.
This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.
Discover How to Launch and Succeed as a Fabless Semiconductor Firm Fabless Semiconductor Implementation takes you step-by-step through the challenges faced by fabless firms in the development of integrated circuits. This expert guide examines the potential pitfalls of IC implementation in the rapidly growing fabless segment of the semiconductor industry and elaborates how to overcome these difficulties. It provides a comprehensive overview of the issues that executives and technical professionals encounter at fabless companies. Filled with over 150 on-target illustrations, this business-building tool presents a clear picture of the entire lifecycle of a fabless enterprise, describing how to envision and execute fabless IC implementation. Inside This Comprehensive Guide to Fabless IC Design - Define and specify the product Understand the customer requirements, the value chain, and the supply chain Select the right implementation approach, including “make” vs. “buy” Choose the best technologies and supply chain Implement IC design, fabrication, and manufacturing Build the operations infrastructure to meet cost and quality requirements Program-manage the distributed supply chain
The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.