Download Free Geothermal Energy Development Book in PDF and EPUB Free Download. You can read online Geothermal Energy Development and write the review.

Geothermal Power Generation, New Developments and Innovations, Second Edition provides an update to the advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security. Edited by respected and leading experts in the field, this book provides a comprehensive overview of the major aspects of geothermal power production. Chapters cover resource discovery, resource characterization, energy conversion systems, design, economic considerations, and a range of fascinating and updated case studies from across the world.Geothermal resources are considered renewable and are currently the only renewable source able to generate baseload electricity while producing very low levels of greenhouse gas emissions, thus playing a key role in future energy needs. - Provides readers with a comprehensive and systematic overview of geothermal power generation - Presents an update to advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security - Edited by authorities in the field and contributed to by global experts in their areas - Supports sustainability and the United Nations Sustainable Development Goals (UN SDGs) 7, 9, 11 and 13
Geothermal Energy Systems provides design and analysis methodologies by using exergy and enhanced exergy tools (covering exergoenvironmental, exergoeconomic, exergetic life cycle assessment, etc.), environmental impact assessment models, and sustainability models and approaches. In addition to presenting newly developed advanced and integrated systems for multigenerational purposes, the book discusses newly developed environmental impact assessment and sustainability evaluation methods and methodologies. With case studies for integrated geothermal energy sources for multigenerational aims, engineers can design and develop new geothermal integrated systems for various applications and discover the main advantages of design choices, system analysis, assessment and development of advanced geothermal power systems. - Explains the ability of geothermal energy power systems to decrease global warming - Discusses sustainable development strategies for using geothermal energy sources - Provides new design conditions for geothermal energy sources-based district energy systems
An In-Depth Introduction to Geothermal Energy Addressing significant changes in the energy markets since the first edition, Geothermal Energy: Renewable Energy and the Environment, Second Edition expounds on the geothermal industry, exploring the expansion, growth, and development of geothermal systems. This text covers every area of geothermal energy, including environmental and economic issues, and technological advancements. Considers the Vast Technological Achievements within the Geothermal Industry Factoring in new concepts for distributed generation, hybrid technologies, and the development of Enhanced Geothermal Systems (EGS), the book incorporates real-world examples designed to illustrate the key aspects of chapter topics. It provides case studies in nearly every chapter, and includes examples from the U.S., Iceland, France, and Japan. Contains comprehensive, quantitative, and rigorous treatment of the geology, geochemistry, and geophysics of geothermal resources, and how they impact exploration, resource assessment, and operations Provides a state-of-the-art description of current Enhanced Geothermal Systems (EGS) Presents an objective description of the most recent economic comparisons including all energy resources Covers environmental issues of energy use and quantitative descriptions of the relative impacts of all renewable and non-renewable energy resources Describes geothermal resources from a global perspective, including direct use and geothermal heat pump applications, as well as power production Geothermal Energy: Renewable Energy and the Environment, Second Edition can be used for undergraduate coursework; as a reference for designers, planners, engineers, and architects; and as a source of background material for policymakers, investors, and regulators.
Geothermal Energy Systems The book encounters basic knowledge about geothermal technology for the utilization of geothermal resources. The book helps to understand the basic geology needed for the utilization of geothermal energy, shows up the practice to make access to geothermal reservoirs by drilling and the engineering of the reservoir by enhancing methods. The book describes the technology to make use of the Earth?s heat for direct use, power, and/or chill and gives boundary conditions for its economic and environmental utilization. A special focus is made on enhanced or engineered geothermal systems (EGS) which are based on concepts which bring a priori less productive reservoirs to an economic use. From the contents: Reservoir Definition Exploration Methods Drilling into Geothermal Reservoirs Enhancing Geothermal Reservoirs Geothermal Reservoir Simulation Energetic Use of EGS Reservoirs Economic Performance and Environmental Assessment Deployment of Enhanced Geothermal Systems plants and CO2-mitigation
Ron DiPippo, Professor Emeritus at the University of Massachusetts Dartmouth, is a world-regarded geothermal expert. This single resource covers all aspects of the utilization of geothermal energy for power generation from fundamental scientific and engineering principles. The thermodynamic basis for the design of geothermal power plants is at the heart of the book and readers are clearly guided on the process of designing and analysing the key types of geothermal energy conversion systems. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader's understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. An important new chapter covers Environmental Impact and Abatement Technologies, including gaseous and solid emissions; water, noise and thermal pollutions; land usage; disturbance of natural hydrothermal manifestations, habitats and vegetation; minimisation of CO2 emissions and environmental impact assessment.The book is illustrated with over 240 photographs and drawings. Nine chapters include practice problems, with solutions, which enable the book to be used as a course text. Also includes a definitive worldwide compilation of every geothermal power plant that has operated, unit by unit, plus a concise primer on the applicable thermodynamics.* Engineering principles are at the heart of the book, with complete coverage of the thermodynamic basis for the design of geothermal power systems* Practical applications are backed up by an extensive selection of case studies that show how geothermal energy conversion systems have been designed, applied and exploited in practice* World renowned geothermal expert DiPippo has including a new chapter on Environmental Impact and Abatement Technology in this new edition
In many developing countries the exponentially growing electricity demand can be covered by using locally available, sustainable low-enthalpy geothermal resources (80-150 °C). Such low-enthalpy sources can make electricity generation more independent from oil imports or from the over-dependence on hydropower. Until now this huge energy resource has only been used by some developed countries like the USA, Iceland and New Zealand. The reason why low-enthalpy geothermal resources are not used for electricity generation is that there is still a misconception that low-enthalpy thermal fluids are fit only for direct application. The advancement of drilling technology, development of efficient heat exchangers and deployment of high sensitive binary fluids contribute to the useful application of this energy resource on a much wider scale. This book focuses on all aspects of low enthalpy geothermal thermal fluids. It will be an important source book for all scientists working on geothermal energy development. Specifically those involved in research in developing countries rich in such thermal resources, and for agencies involved in bilateral and international cooperation.
In the past several years, some energy technologies that inject or extract fluid from the Earth, such as oil and gas development and geothermal energy development, have been found or suspected to cause seismic events, drawing heightened public attention. Although only a very small fraction of injection and extraction activities among the hundreds of thousands of energy development sites in the United States have induced seismicity at levels noticeable to the public, understanding the potential for inducing felt seismic events and for limiting their occurrence and impacts is desirable for state and federal agencies, industry, and the public at large. To better understand, limit, and respond to induced seismic events, work is needed to build robust prediction models, to assess potential hazards, and to help relevant agencies coordinate to address them. Induced Seismicity Potential in Energy Technologies identifies gaps in knowledge and research needed to advance the understanding of induced seismicity; identify gaps in induced seismic hazard assessment methodologies and the research to close those gaps; and assess options for steps toward best practices with regard to energy development and induced seismicity potential.
More than 20 countries generate electricity from geothermal resources and about 60 countries make direct use of geothermal energy. A ten-fold increase in geothermal energy use is foreseeable at the current technology level. Geothermal Energy: An Alternative Resource for the 21st Century provides a readable and coherent account of all facets of geothermal energy development and summarizes the present day knowledge on geothermal resources, their exploration and exploitation. Accounts of geothermal resource models, various exploration techniques, drilling and production technology are discussed within 9 chapters, as well as important concepts and current technological developments. - Interdisciplinary approach, combining traditional disciplines such as geology, geophysics, and engineering - Provides a readable and coherent account of all facets of geothermal energy development - Describes the importance of bringing potable water to high-demand areas such as the tropical regions
This book addresses the societal aspects of harnessing geothermal resources for different uses, such as power production, heating and cooling. It introduces a theoretical framework for a social scientific approach to the field, and presents a preliminary collection of empirical case studies on geothermal energy and society from across the world. By providing a conceptual and methodological framework to the study of geothermal energy and societies, it brings together information and analyses in the field that to date have been sparse and fragmented. The contributors explore the diverse aspects of the relationship between the harnessing of geothermal resources and the societies and local communities in which these developments take place. After introducing geothermal technologies, renewable energy concepts as well as their social and policy context and the regulative and environmental aspects of geothermal energy, the book analyzes and discusses twelve global case studies, and compares the social engagement tools applied with those used in other sectors. Of interest to researchers from a range of disciplines who wish to explore the issues surrounding energy and society, it is also a valuable resource for geothermal experts and postgraduate students wish to study the field in greater detail.