Download Free Geoscience In Action Book in PDF and EPUB Free Download. You can read online Geoscience In Action and write the review.

Monitoring the Earth is the first book to review the recent advances in satellite technology, computing and mass spectrometry that are opening up completely new avenues of enquiry to Earth scientists. Among the geological changes that were previously considered too slow or too extensive for direct measurements and that can now be monitored directly are continental displacements, mountain uplift, the growth and decay of icesheets and glaciers, the faulting and folding of rocks, the progress of weathering and sedimentation, and the growth of coral reefs. In addition to these developments, the book assesses progress in fields not normally considered part of physical geology, such as the shape and orbit of the gravity and the terrestrial magnetic field. The results from the new findings are already helping Earth scientists analyze and explain the underlying mechanisms, notably with regard to the storage and release of strain during earthquakes and the interaction of glacial history with the Earth's rate of rotation. The outcoe is a foretaste of the physical geology of the space age.lly illustrated with line drawings and photographs, and ith a bibliography that encompasses the scattered and disparate litarature, Monitoring the Earth is intended for undergraduates in geology, geomorphology, geomatic engineering and planetary science, but it should also be of interest to astronomers and historians of science.
Grade level: 1, 2, 3, 4, 5, 6, 7, 8, p, e, i, s.
From energy and water resources to natural disasters, and from changing climatic patterns to the evolution of the Earth’s deep interior, geoscience research affects people’s lives in many ways and on many levels. This book offers a stimulating cross-disciplinary perspective on the important relationship between geoscience research and outreach activities for schools and for the general public. The contributors – academics, research scientists, science educators and outreach program educators – describe and evaluate outreach programs from around the world. A section entitled Field-based Approaches includes a chapter describing an initiative to engage Alaskan communities and students in research, and another on problem-based learning in the field setting. The Online Approaches section discusses ways to connect students and scientists using online forums; use of the web and social media, including the United Nations University and its experience with the design of a web magazine featuring geoscience research; and video clips on marine geoscience created by students and scientists. The section on Workshop and Laboratory-based Approaches includes a chapter on teaching geochronology to high school students, and another describing an extracurricular school activity program on meteorology. The Program Design section presents chapters on Integrating Geoscience Research in Primary and Secondary Education, on ways to bridge research with science education at the high school level, and on use of online geoscience data from the Great Lakes. The concluding section, Promoting Research-enhanced Outreach, offers chapters on Geoscience Outreach Education with the local community by a leading research-intensive university, and on the use of research to promote action in Earth science professional development for schoolteachers.Geoscience Research and Outreach: Schools and Public Engagement will benefit geoscience researchers who wish to promote their work beyond academia. It offers guidance to those seeking research funding from agencies, which increasingly request detailed plans for outreach activities in research proposals. Policymakers, educators and scientists working in museums, learned societies and public organizations who wish to widen participation will also find this book useful. Together with the companion volume Geoscience Research and Education: Teaching at Universities, this book showcases the key role that geoscience research plays in a wide spectrum of educational settings.
This report summarizes a workshop organized by the National Academies' Roundtable on Science and Technology for Sustainability. The workshop brought together a select group of program managers from the public and private sectors to discuss specific cases of linking knowledge to action in a diverse set of integrated observation, assessment, and decision support systems. Workshop discussions explored a wide variety of experiments in harnessing science and technology to goals of promoting development and conserving the environment. Participants reflected on the most significant challenges that they have faced when trying to implement their programs and the strategies that they have used to address them successfully. The report summarizes discussions at the workshop, including common themes about the process of linking knowledge with actions for sustainable development that emerged across a wide range of cases, sectors, and regions.
Geoscience data and collections (such as, rock and sediment cores, geophysical data, engineering records, and fossils) are necessary for industries to discover and develop domestic natural resources to fulfill the nation's energy and mineral requirements and to improve the prediction of immediate and long term hazards, such as land slides, volcanic eruptions and global climate change. While the nation has assembled a wealth of geoscience data and collections, their utility remains incompletely tapped. Many could act as invaluable resources in the future but immediate action is needed if they are to remain available. Housing of and access to geoscience data and collections have become critical issues for industry, federal and state agencies, museums, and universities. Many resources are in imminent danger of being lost through mismanagement, neglect, or disposal. A striking 46 percent of the state geological surveys polled by the committee reported that there is no space available or they have refused to accept new material. In order to address these challenges, Geoscience Data and Collections offers a comprehensive strategy for managing geoscience data and collections in the United States.
Earth Science provides lots of activities to allow students to discover for themselves the wonders of our Earth. They'll find out about continents and earthquakes as well as the Earth's air, water and soil. Your students will enjoy conducting a variety of experiments to learn about the motion of the Earth, the Earth's layers and more. Review quizzes are included so students can measure what they have learned as well as questions to help them think and reason about our amazing Earth.
Collection of activities, projects, and experiments related to Earth sciences.
Geology and Health is an integration of papers from geo-bio-chemical scientists on health issues of concern to humankind worldwide, demonstrating how the health and well-being of populations now and in the future can benefit through coordinated scientific efforts. International examples on dusts, coal, arsenic, fluorine, lead, mercury, and water borne chemicals, that lead to health effects are documented and explored. They were selected to illustrate how hazards and potential hazards may be from natural materials and processes and how anthropomorphic changes may have contributed to disease and debilitation instead of solutions. Introductory essays by the editors highlight some of the progress toward scientific integration that could be applied to other geographic sites and research efforts. A global purview and integration of earth and health sciences expertise could benefit the future of populations from many countries. Effective solutions to combat present and future hazards will arise when the full scope of human interactions with the total environment is appreciated by the wide range of people in positions to make important and probably expensive decisions. A case to illustrate the point of necessary crossover between Geology and Health was the drilling of shallow tube wells in Bangladesh to provide non-contaminated ground water. This "good" solution unfortunately mobilized arsenic from rocks into the aquifer and created an unforeseen or 'silent' hazard: arsenic. Geologists produce maps of earth materials and are concerned with natural processes in the environment with long time-frame horizons. The health effects encountered through changing the water source might have been avoided if the hydrological characteristics of the Bangladesh delta had been known and any chemical hazards had been investigated and documented. A recurrence of this type of oversight should be avoidable when responsible parties, often government officials, appreciate the necessity of such integrated efforts. The book extols the virtues of cooperation between the earth, life and health sciences, as the most practical approach to better public health worldwide.