Download Free Geomorphological Hazards In High Mountain Areas Book in PDF and EPUB Free Download. You can read online Geomorphological Hazards In High Mountain Areas and write the review.

On the basis of a total of thirteen case examples from the Tien Shan, Karakorum, Himalaya and Tangula Shan (central Tibet), the risk potential and hazards are inferred from the development of landscape during the Quaternary. The history of glaciers can be seen as of central importance for this. The Ice Age glacial erosion created V-shaped valleys, which with their steep flanks - as a consequence of the interglacial formation of V -valleys - have prepared and brought about landslides as well as rockslides and the hazards, combined with them. The same is true for the moraines, which the gla ciers have deposited high-up in the valley flanks and related loose stone deposits. Dry and wet mass movements follow after heavy precipitation, especially in the semi-arid investigation areas, and are catastrophes for the settlements and the communication routes in the valley floors. Their key-forms are debris cones and debris slopes, as well as mudflows and alluvial fans. In addition to the Ice Age glaciation history, as a preparatory, indirect factor, the Holocene to present glaciation history is, as a result of the danlming-up of glacier- and moraine lakes and their outbursts, a direct risk factor. The examples presented of acute and already occurred cases of damage were inves tigated in the years 1989-1994. Acknowledgements The authors wish to thank the Deutsche Forschungsgemeinschaft (DFG), the Max Planck-Gesellschaft (MPG), the Volkswagen-Stiftting (VW) and the Deutscher Aka demischer Austauschdienst (DAAD) for the financial support for the field-work.
This book provides a definitive overview of the global drivers of high-mountain cryosphere change and their implications for people across high-mountain regions.
This edited volume, showcasing cutting-edge research, addresses two primary questions - what are the main drivers of change in high-mountains and what are the risks implied by these changes? From a physical perspective, it examines the complex interplay between climate and the high-mountain cryosphere, with further chapters covering tectonics, volcano-ice interactions, hydrology, slope stability, erosion, ecosystems, and glacier- and snow-related hazards. Societal dimensions, both global and local, of high-mountain cryospheric change are also explored. The book offers unique perspectives on high-mountain cultures, livelihoods, governance and natural resources management, focusing on how global change influences societies and how people respond to climate-induced cryospheric changes. An invaluable reference for researchers and professionals in cryospheric science, geomorphology, climatology, environmental studies and human geography, this volume will also be of interest to practitioners working in global change and risk, including NGOs and policy advisors.
A state-of-the-art assessment of how geomorphology contributes to the comprehension, mapping and modelling of hazardous Earth surface processes.
This book discusses the recession of alpine glaciers since the end of the Little Ice Age (LIA), which has been accelerating in the past decades. It provides an overview of the research in the field, presenting definitions and information about the different proglacial areas and systems. A number of case studies are from the PROSA project group which encompasses the expertise of geomorphologists, geologists, glaciologists and geodesists. The PROSA joint project (High-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) is determined to tackle the problems of geomorphic activity on sediment export through a quantification of sediment fluxes effected by the aforementioned geomorphic processes within the forefield of the Gepatschferner glacier (Central Alps, Austria).
This book gives an overview of the state of research in fields pertaining to the detection, understanding and prediction of global change impacts in mountain regions. More than sixty contributions from paleoclimatology, cryospheric research, hydrology, ecology, and development studies are compiled in this volume, each with an outlook on future research directions. The book will interest meteorologists, geologists, botanists and climatologists.
This book examines geomorphic hazards, land form changes that adversely affect the geomorphic stability of a site or produces adverse socioeconomic impacts. These hazards include floods, landslides, seismicity, soil erosion and volcanic eruption.
Human activities have had a huge impact on the environment and landscape, through industrialisation and land-use change, leading to climate change, deforestation, desertification, land degradation, and air and water pollution. These impacts are strongly linked to the occurrence of geomorphological hazards, such as floods, landslides, snow avalanches, soil erosion, and others. Geomorphological work includes not only the understanding but the mapping and modelling of Earth's surface processes, many of which directly affect human societies. In addition, geomorphologists are becoming increasingly involved with the dimensions of societal problem solving, through vulnerability analysis, hazard and risk assessment and management. The work of geomorphologists is therefore of prime importance for disaster prevention. An international team of geomorphologists have contributed their expertise to this volume, making this a scientifically rigorous work for a wide audience of geomorphologists and other Earth scientists, including those involved in environmental science, hazard and risk assessment, management and policy.
Using examples chosen from a variety of geographical settings and scales, A. J. Gerrard presents a novel approach to the study of mountain environments. He provides a framework in which mountains as special environments can be studied and shows how, no matter what their location or origin all mountain regions share common characteristics and undergo similar shaping processes. Gerrard's integrated approach combines ecological, climatological, hydrological, volcanic, and environmental management concerns in a systematic treatment of mountain geomorphology. He begins by examining the special nature of mountains, including a new classification of mountain types. He discusses mountain ecosystems, stressing the interaction between biota, soil, climate, relief, and geology, examines the high-energy systems of weathering and mass movement, and analyzes the role of rivers and hydrology and the processes of slope evolution. Two chapters are devoted to the particular characteristics of glaciation and vulcanism in mountain formation. The book concludes with a discussion of the special problems that human use of mountain regions create, including engineering, natural hazards, soil erosion, and the concept of integrated development. A. J. Gerrard is Lecturer in Geography at the University of Birmingham, England