Download Free Geomorphic Systems Book in PDF and EPUB Free Download. You can read online Geomorphic Systems and write the review.

Filling a niche in the geomorphology teaching market, this introductory book is built around a 12 week course in fluvial geomorphology. ‘Reading the landscape’ entails making sense of what a riverscape looks like, how it works, how it has evolved over time, and how alterations to one part of a catchment may have secondary consequences elsewhere, over different timeframes. These place-based field analyses are framed within their topographic, climatic and environmental context. Issues and principles presented in the first part of this book provide foundational understandings that underpin the approach to reading the landscape that is presented in the second half of the book. In reading the landscape, detective-style investigations and interpretations are tied to theoretical and conceptual principles to generate catchment-specific analyses of river character, behaviour and evolution, including responses to human disturbance. This book has been constructed as an introductory text on river landscapes, providing a bridge and/or companion to quantitatively-framed or modelled approaches to landscape analysis that are addressed elsewhere. Key principles outlined in the book emphasise the importance of complexity, contingency and emergence in interpreting the character, behaviour and evolution of any given system. The target audience is second and third year undergraduate students in geomorphology, hydrology, earth science and environmental science, as well as river practitioners who use geomorphic understandings to guide scientific and/or management applications. The primary focus of Kirstie and Gary’s research and teaching entails the use of geomorphic principles as a tool with which to develop coherent scientific understandings of river systems, and the application of these understandings in management practice. Kirstie and Gary are co-developers of the River Styles® Framework and Short Course that is widely used in river management, decision-making and training. Additional resources for this book can be found at: www.wiley.com/go/fryirs/riversystems.
This extensively revised, restructured, and updated edition continues to present an engaging and comprehensive introduction to the subject, exploring the world’s landforms from a broad systems perspective. It covers the basics of Earth surface forms and processes, while reflecting on the latest developments in the field. Fundamentals of Geomorphology begins with a consideration of the nature of geomorphology, process and form, history, and geomorphic systems, and moves on to discuss: structure: structural landforms associated with plate tectonics and those associated with volcanoes, impact craters, and folds, faults, and joints process and form: landforms resulting from, or influenced by, the exogenic agencies of weathering, running water, flowing ice and meltwater, ground ice and frost, the wind, and the sea; landforms developed on limestone; and landscape evolution, a discussion of ancient landforms, including palaeosurfaces, stagnant landscape features, and evolutionary aspects of landscape change. This third edition has been fully updated to include a clearer initial explanation of the nature of geomorphology, of land surface process and form, and of land-surface change over different timescales. The text has been restructured to incorporate information on geomorphic materials and processes at more suitable points in the book. Finally, historical geomorphology has been integrated throughout the text to reflect the importance of history in all aspects of geomorphology. Fundamentals of Geomorphology provides a stimulating and innovative perspective on the key topics and debates within the field of geomorphology. Written in an accessible and lively manner, it includes guides to further reading, chapter summaries, and an extensive glossary of key terms. The book is also illustrated throughout with over 200 informative diagrams and attractive photographs, all in colour.
Volume editor is the leading authority in the field Alphabetically organized in two volumes c.700 comprehensively signed, cross-referenced and indexed entries Detailed bibliographies and suggestions for further reading follow most entries Fully illustrated: over 300 plates and line drawings Written by an editorial team of over 270 experts from over thirty countries
Empirical research needs a profound theory to be successful. This is the simple but, in its consequences, radical approach for this study in geomorphology. It critically analyses the current system understanding and offers a new view for a geomorphology that understands systems as being open but at the same time operationally closed, as self-organized, structure-building and potentially self-referential. Kirsten von Elverfeldt succeeds in designing a theoretical framework that sets new standards within Physical Geography. By using state-of-the-art concepts in system theory, it offers also new bridges to Human Geography as well as to other neighbouring disciplines. This book was awarded the Dissertation prize 2010 of the German Working Group in Geomorphology of the DGfG and the Hans Bobek-prize of the ÖGG (Austrian Geographical Society).
"I can think of no better guides than Professors Ken Gregory and John Lewin to lead the reader through the conceptual basis of this exciting science." - Victor R. Baker, University of Arizona "A very readable and informative introduction to the discipline for senior undergraduates, postgraduates and researchers." - Angela Gurnell, Queen Mary University of London "Time will tell, but this book may well mark a turning point in the way students and scientists alike perceive Earth surface processes and landforms." - Jonathan Phillips, University of Kentucky This student focused book provides a detailed description and analysis of the key concepts, ideas, and hypotheses that inform geomorphology. Kenneth Gregory and John Lewin explain the basics of landform science in 20 concepts, each the subject of a substantive, cross-referenced entry. They use the idea of the ′geomorphic system′ to organise entries in four sections, with extensive web resources provided for each: System Contexts: The Systems Approach / Uniformitarianism / Landform / Form, Process and Materials / Equilibrium / Complexity and Non Linear Dynamical Systems System Functioning: Cycles and cascades / Force-Resistance / Geomorphic work / Process Form Models System Adjustments: Timescales / Forcings / Change Trajectories / Inheritance and Sensitivity / Anthropocene Drivers for the Future: Geomorphic Hazards / Geomorphic Engineering / Design and Prediction Aligned with the teaching literature, this innovative text provides a fully-functioning learning environment for study, revision, and even self-directed research for both undergraduate and postgraduate students of geomorphology.
This book presents the study of limnogeomorphology, in which past proxy data such as lacustrine sediments with information on landform development can be linked to modern observed data acquired by instruments, including hydro-geomorphological and sedimentary data. Traditionally, in the field of earth sciences, it has been thought that geophysical studies dealing mainly with the present process were not smoothly linked to geological studies that originated from historical studies. Although such earth-surface process studies are closely related to those on historical landform development in the field of geomorphology, they have been studied separately. Those two geomorphology studies correspond to process geomorphology (dynamic geomorphology) and historical geomorphology. There have been some attempts to combine them; however, they lacked past quantitative records available for further analyses. In the study of limnogeomorphology, proxy data can be converted to quantitative information to be utilized in future environmental discussions. This book also covers information not only on large lake-catchment systems, but on small systems. Those include long-term and short-term and large-scale and small-scale environmental changes in east Eurasia such as Lake Baikal, Lake Khuvsgul, Lake Biwa, and small lakes in Japan, Mongolia, China, and Korea.
This collection of papers from the 23rd Binghamton Geomorphology Symposium is intended to: 1. reevaluate the influence of systems theory in geomorphology; 2. explore links between traditional systems-oriented approaches and contemporary applications of nonlinear dynamical systems theory in geomorphology; and 3. present cutting-edge examples of the analysis of geomorphic systems. Contributions encompass hillslope, fluvial, coastal, aeolian, and tectonic geomorphology. This volume should be of interest to geomorphologists, physical geographers, and geologists, as well as to other earth and environmental scientists who deal with landscapes and earth surface systems.
This volume provides a comprehensive perspective on geomorphic approaches to management of lowland alluvial rivers in North America and Europe. Many lowland rivers have been heavily managed for flood control and navigation for decades or centuries, resulting in engineered channels and embanked floodplains with substantially altered sediment loads and geomorphic processes. Over the past decade, floodplain management of many lowland rivers has taken on new importance because of concerns about the potential for global environmental change to alter floodplain processes, necessitating revised management strategies that minimize flood risk while enhancing environmental attributes of floodplains influenced by local embankments and upstream dams. Recognition of the failure of old perspectives on river management and the need to enhance environmental sustainability has stimulated a new approach to river management. The manner that river restoration and integrated management are implemented, however, requires a case study approach that takes into account the impact of historic human impacts to the system, especially engineering. The river basins examined in this volume provide a representative coverage of the drainage of North America and Europe, taking into account a range of climatic and physiographic provinces. They include the 1) Sacramento (California, USA), 2) San Joaquin (California), 3) Missouri (Missouri, USA), 4) Red (Manitoba, Canada and Minnesota, USA), 5) Mississippi (Louisiana, USA), 6) Kissimmee (Florida, USA), 7) Ebro (Spain), 8) Rhone (France), 9) Rhine (Netherlands), 10) Danube (Romania), and 11) Volga (Russian Federation) Rivers. The case studies covered in these chapters span a range of fluvial modes of adjustment, including sediment, channel, hydrologic regime, floodplains, as well as ecosystem and environmental associations.
This book discusses the recession of alpine glaciers since the end of the Little Ice Age (LIA), which has been accelerating in the past decades. It provides an overview of the research in the field, presenting definitions and information about the different proglacial areas and systems. A number of case studies are from the PROSA project group which encompasses the expertise of geomorphologists, geologists, glaciologists and geodesists. The PROSA joint project (High-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) is determined to tackle the problems of geomorphic activity on sediment export through a quantification of sediment fluxes effected by the aforementioned geomorphic processes within the forefield of the Gepatschferner glacier (Central Alps, Austria).