Download Free Geomicrobiology And Its Relevance To Nuclear Waste Disposal Book in PDF and EPUB Free Download. You can read online Geomicrobiology And Its Relevance To Nuclear Waste Disposal and write the review.

The Microbiology of Nuclear Waste Disposal is a state-of-the-art reference featuring contributions focusing on the impact of microbes on the safe long-term disposal of nuclear waste. This book is the first to cover this important emerging topic, and is written for a wide audience encompassing regulators, implementers, academics, and other stakeholders. The book is also of interest to those working on the wider exploitation of the subsurface, such as bioremediation, carbon capture and storage, geothermal energy, and water quality. Planning for suitable facilities in the U.S., Europe, and Asia has been based mainly on knowledge from the geological and physical sciences. However, recent studies have shown that microbial life can proliferate in the inhospitable environments associated with radioactive waste disposal, and can control the long-term fate of nuclear materials. This can have beneficial and damaging impacts, which need to be quantified.
Obtaining and analyzing samples is challenging in subsurface science. This first-of-its-kind reference book addresses accomplishments in this field-from drilling to sample work-up. A collaborative approach is taken, involving the efforts of microbiologists, geochemists, hydrologists, and drilling and mining experts to present a comprehensive view of subsurface research. The text provides practical information about obtaining, analyzing, and evaluating subsurface materials; the current status of subsurface microbial ecology; and describes several applications that will interest a variety of readers, including engineers, physical, and life scientists.
The Microbiology of Nuclear Waste Disposal is a state-of-the-art reference featuring contributions focusing on the impact of microbes on the safe long-term disposal of nuclear waste. This book is the first to cover this important emerging topic, and is written for a wide audience encompassing regulators, implementers, academics, and other stakeholders. The book is also of interest to those working on the wider exploitation of the subsurface, such as bioremediation, carbon capture and storage, geothermal energy, and water quality. Planning for suitable facilities in the U.S., Europe, and Asia has been based mainly on knowledge from the geological and physical sciences. However, recent studies have shown that microbial life can proliferate in the inhospitable environments associated with radioactive waste disposal, and can control the long-term fate of nuclear materials. This can have beneficial and damaging impacts, which need to be quantified. - Encompasses expertise from both the bio and geo disciplines, aiming to foster important collaborations across this disciplinary divide - Includes reviews and research papers from leading groups in the field - Provides helpful guidance in light of plans progressing worldwide for geological disposal facilities - Includes timely research for planning and safety case development
We are now entering the third decade of the 21st Century, and, especially in the last years, the achievements made by scientists in the field of Microbiology have been exceptional, leading to major advancements. Frontiers has organized a series of Research Topics to highlight the latest advancements in science in order to be at the forefront of science in different fields of research. This specific editorial initiative, led by Dr. Ruiyong Zhang is focused on new insights, novel developments, current challenges, latest discoveries, recent advances and future perspectives in the field.
Biotechnology for Waste Management and Site Restoration covers: waste management - solid, gaseous, liquid; site restoration - radioactivity, organics, toxic metals; educational, economic, social and business aspects; and international collaboration. International collaboration is growing apace and many concrete projects have been started. The body of knowledge is growing. Over the long term, it is envisaged that this international collaboration will result in a long-term scientific and technological strategy, new technologies and alternative solutions, and practical implementations of biotechnology for the nuclear and industrial sectors of the economy.
Includes all works deriving from DOE, other related government-sponsored information and foreign nonnuclear information.
Biogeochemistry, still in its formative stage twenty years ago, is now a young, interdisciplinary subfield of earth sciences, life sciences and chemistry. An international scientific association (International Symposia on Environmental Biogeochemistry incorporated - ISEB) was founded to organize international symposia to bring together microbiologists, biologists, chemists, geochemists, soil scientists, oceanographers, ecologists and environmental engineers interested in the biogeochemistry of terrestrial, aquatic and atmospheric environments.After the 8th ISEB held in Nancy, France, this volume was compiled. These fifty selected contributions from specialists of varying backgrounds and interests show the diversity and the common framework of the direct or indirect interactions of living organisms and their abiotic environments.