Download Free Geomicrobiology And Biogeochemistry Book in PDF and EPUB Free Download. You can read online Geomicrobiology And Biogeochemistry and write the review.

Over the past 4 billion years, microorganisms have contributed to shaping the earth and making it more habitable for higher forms of life. They are remarkable in their metabolic diversity and their ability to harvest energy from oxidation and reduction reactions. Research on these microbiological processes has led to the newly evolving fields of geomicrobiology and biogeochemistry, linking the geosphere and the biosphere. This volume of the Soil Biology series provides an overview of the biogeochemical processes and the microorganisms involved, with an emphasis on the industrial applications. Topics treated include aspects such as bioremediation of contaminated environments, biomining, biotechnological applications of extremophiles, subsurface petroleum microbiology, enhanced oil recovery using microbes and their products, metal extraction from soil, soil elemental cycling and plant nutrition.
Over the past 4 billion years, microorganisms have contributed to shaping the earth and making it more habitable for higher forms of life. They are remarkable in their metabolic diversity and their ability to harvest energy from oxidation and reduction reactions. Research on these microbiological processes has led to the newly evolving fields of geomicrobiology and biogeochemistry, linking the geosphere and the biosphere. This volume of the Soil Biology series provides an overview of the biogeochemical processes and the microorganisms involved, with an emphasis on the industrial applications. Topics treated include aspects such as bioremediation of contaminated environments, biomining, biotechnological applications of extremophiles, subsurface petroleum microbiology, enhanced oil recovery using microbes and their products, metal extraction from soil, soil elemental cycling and plant nutrition.
This book promotes further understanding of the contribution that fungi make to the biogeochemical cycling of elements, the chemical and biological mechanisms involved, and their environmental and biotechnological significance.
Significant refinements of biogeochemical methods applied to mineral exploration have been made during more than twenty years since the last major publication on this technique. This innovative, practical and comprehensive text is designed as a field handbook and an office reference volume. It outlines the historical development of biogeochemical methods applied to mineral exploration, and provides details of what, how, why and when to collect samples from all major climatic environments with examples from around the world. Recent commercialization of sophisticated analytical technology permits immensely more insight into the multi-element composition of plants. In particular, precise determination of ultra-trace levels of 'pathfinder' elements in dry tissues and recognition of element distribution patterns with respect to concealed mineralization. Data handling and interpretation are discussed in context of a wealth of previously unpublished information, including a section on plant mineralogy, much of which has been classified as confidential until recently. Data are provided on the biogeochemistry of more than 60 elements and, by case history examples, their roles discussed in assisting in the discovery of concealed mineral deposits. A look to the future includes the potential role of bacteria to provide new focus for mineral exploration. - Describes the practical aspects of plant selection and collection in different environments around the world, and how to process and analyze them - Discusses more than 60 elements in plants, with data interpretation and case history results that include exploration for Au, PGEs, U, base metals and kimberlites
The interaction of microorganisms with geological activities results in processes influencing development of the Earth’s geo- and biospheres. In assessing these microbial functions, scientists have explored short- and longterm geological changes attributed to microorganisms and developed new approaches to evaluate the physiology of microbes including microbial interaction with the geological environment. As the field of geomicrobiology developed, it has become highly interdisciplinary and this book provides a review of the recent developments in a cross section of topics including origin of life, microbial-mineral interactions and microbial processes functioning in marine as well as terrestrial environments. A major component of this book addresses molecular techniques to evaluate microbial evolution and assess relationships of microbes in complex, natural c- munities. Recent developments in so-called ‘omics’ technologies, including (meta) genomics and (meta)proteomics, and isotope labeling methods allow new insights into the function of microbial community members and their possible geological impact. While this book summarizes current knowledge in various areas, it also reveals unresolved questions that require future investigations. Information in these chapters enhances our fundamental knowledge of geomicrobiology that contributes to the exploitation of microbial functions in mineral and environmental biotechn- ogy applications. It is our hope that this book will stimulate interest in the general field of geomicrobiology and encourage others to explore microbial processes as applied to the Earth.
Microbes catalyze countless chemical reactions in nature which control the chemistry of the environment. Aquatic Geomicrobiology looks at these reactions and their effect on the aquatic environments from the perspective of the microbes involved. The volume begins with three introductory chapters outlining the basic principles of microbial systematics, microbial ecology, and chemical thermodynamics. These provide a framework for exploring the microbial control of elemental cycling in the remaining chapters. Readers will learn how microbes control the cycling of elements, the structure of the microbial ecosystems involved, and what environmental factors influence the activities of microbial populations. Also available in hardback Written by international experts in the microbial ecology and biogeochemistry of aquatic systems Includes introductory chapters on microbial systematics, principles of microbial ecology, and chemical thermodynamics Contains over 1500 references
Precious metals continue to have economic and sociocultural importance, as their usage evolves and diversifies over time. Today, the industrial application of precious metals is increasing with the development of scientific and technological innovations. Especially, the biological cycling of these metals is receiving more and more attention, as the microbiota may be key to a range of issues regarding exploration, ore-processing and metallurgy, and the processing of electron waste. In this volume, we focus on enhancing the fundamental understanding of the biological processes that drive noble metal cycling and examine how this knowledge may be turned into biotechnolical applications.
This well-referenced, inquiry-driven text presents an up-to-date and comprehensive understanding of the emerging field of environmental microbiology. Coherent and comprehensive treatment of the dynamic, emerging field of environmental microbiology Emphasis on real-world habitats and selective pressures experienced by naturally occurring microorganisms Case studies and “Science and the Citizen” features relate issues in the public’s mind to the underlying science Unique emphasis on current methodologies and strategies for conducting environmental microbiological research, including methods, logic, and data interpretation
Elements move through Earth's critical zone along interconnected pathways that are strongly influenced by fluctuations in water and energy. The biogeochemical cycling of elements is inextricably linked to changes in climate and ecological disturbances, both natural and man-made. Biogeochemical Cycles: Ecological Drivers and Environmental Impact examines the influences and effects of biogeochemical elemental cycles in different ecosystems in the critical zone. Volume highlights include: Impact of global change on the biogeochemical functioning of diverse ecosystems Biological drivers of soil, rock, and mineral weathering Natural elemental sources for improving sustainability of ecosystems Links between natural ecosystems and managed agricultural systems Non-carbon elemental cycles affected by climate change Subsystems particularly vulnerable to global change The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Author. Book Review: http://www.elementsmagazine.org/archives/e16_6/e16_6_dep_bookreview.pdf
A comprehensive handbook outlining state-of-the-art analytical techniques used in geomicrobiology, for advanced students, researchers and professional scientists.