Download Free Geometry Over Nonclosed Fields Book in PDF and EPUB Free Download. You can read online Geometry Over Nonclosed Fields and write the review.

Based on the Simons Symposia held in 2015, the proceedings in this volume focus on rational curves on higher-dimensional algebraic varieties and applications of the theory of curves to arithmetic problems. There has been significant progress in this field with major new results, which have given new impetus to the study of rational curves and spaces of rational curves on K3 surfaces and their higher-dimensional generalizations. One main recent insight the book covers is the idea that the geometry of rational curves is tightly coupled to properties of derived categories of sheaves on K3 surfaces. The implementation of this idea led to proofs of long-standing conjectures concerning birational properties of holomorphic symplectic varieties, which in turn should yield new theorems in arithmetic. This proceedings volume covers these new insights in detail.
This book provides an overview of the latest progress on rationality questions in algebraic geometry. It discusses new developments such as universal triviality of the Chow group of zero cycles, various aspects of stable birationality, cubic and Fano fourfolds, rationality of moduli spaces and birational invariants of group actions on varieties, contributed by the foremost experts in their fields. The question of whether an algebraic variety can be parametrized by rational functions of as many variables as its dimension has a long history and played an important role in the history of algebraic geometry. Recent developments in algebraic geometry have made this question again a focal point of research and formed the impetus to organize a conference in the series of conferences on the island of Schiermonnikoog. The book follows in the tradition of earlier volumes, which originated from conferences on the islands Texel and Schiermonnikoog.
An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.
​​​​This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.
Number systems based on a finite collection of symbols, such as the 0s and 1s of computer circuitry, are ubiquitous in the modern age. Finite fields are the most important such number systems, playing a vital role in military and civilian communications through coding theory and cryptography. These disciplines have evolved over recent decades, and where once the focus was on algebraic curves over finite fields, recent developments have revealed the increasing importance of higher-dimensional algebraic varieties over finite fields. The papers included in this publication introduce the reader to recent developments in algebraic geometry over finite fields with particular attention to applications of geometric techniques to the study of rational points on varieties over finite fields of dimension of at least 2.
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Based on survey lectures given at the 2006 Clay Summer School on Arithmetic Geometry at the Mathematics Institute of the University of Gottingen, this tile is intended for graduate students and recent PhD's. It introduces readers to modern techniques and conjectures at the interface of number theory and algebraic geometry.
The book is devoted to the theory of algebraic geometric codes, a subject formed on the border of several domains of mathematics. On one side there are such classical areas as algebraic geometry and number theory; on the other, information transmission theory, combinatorics, finite geometries, dense packings, etc. The authors give a unique perspective on the subject. Whereas most books on coding theory build up coding theory from within, starting from elementary concepts and almost always finishing without reaching a certain depth, this book constantly looks for interpretations that connect coding theory to algebraic geometry and number theory. There are no prerequisites other than a standard algebra graduate course. The first two chapters of the book can serve as an introduction to coding theory and algebraic geometry respectively. Special attention is given to the geometry of curves over finite fields in the third chapter. Finally, in the last chapter the authors explain relations between all of these: the theory of algebraic geometric codes.
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
This book is a revised and expanded new edition of the first four chapters of Shafarevich’s well-known introductory book on algebraic geometry. Besides correcting misprints and inaccuracies, the author has added plenty of new material, mostly concrete geometrical material such as Grassmannian varieties, plane cubic curves, the cubic surface, degenerations of quadrics and elliptic curves, the Bertini theorems, and normal surface singularities.