Download Free Geometry Optimization And Computational Electromagnetics Book in PDF and EPUB Free Download. You can read online Geometry Optimization And Computational Electromagnetics and write the review.

This monograph provides a framework for students and practitioners who are working on the solution of electromagnetic imaging in geophysics. Bridging the gap between theory and practical applied material (for example, inverse and forward problems), it provides a simple explanation of finite volume discretization, basic concepts in solving inverse problems through optimization, a summary of applied electromagnetics methods, and MATLAB??code for efficient computation.
Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields and fluid flow and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physic kinetics, and plasmadynamics Integrates interlinking computational model and simulation techniques of aerodynamics and electromagnetics Combines classic plasma drift-diffusion theory and electron impact ionization modeling for electromagnetic-aerodynamic interactions Describes models of internal degrees of freedom for vibration relaxation and electron excitations
This volume contains the proceedings of the first ICASE/LaRC Work shop on Computational Electromagnetics and Its Applications conducted by the Institute for Computer Applications in Science and Engineering and NASA Langley Research Center. We had several goals in mind when we decided, jointly with the Elec tromagnetics Research Branch, to organize this workshop on Computa tional Electromagnetics ( CEM). Among our goals were a desire to obtain an overview of the current state of CEM, covering both algorithms and ap plications and their effect on NASA's activities in this area. In addition, we wanted to provide an attractive setting for computational scientists with expertise in other fields, especially computational fluid dynamics (CFD), to observe the algorithms and tools of CEM at work. Our expectation was that scientists from both fields would discover mutually beneficial inter connections and relationships. Another goal was to learn of progress in solution algorithms for electromagnetic optimization and design problems; such problems make extensive use of field solvers and computational effi ciency is at a premium. To achieve these goals we assembled the renowned group of speakers from academia and industry whose talks are contained in this volume. The papers are printed in the same order in which the talks were pre sented at the meeting. The first paper is an overview of work currently being performed in the Electromagnetic Research Branch at the Langley Research Center.
This comprehensive textbook covers both classical and geometric aspects of optimization using methods, deterministic and stochastic, in a single volume and in a language accessible to non-mathematicians. It will help serve as an ideal study material for senior undergraduate and graduate students in the fields of civil, mechanical, aerospace, electrical, electronics, and communication engineering. The book includes: Derivative-based Methods of Optimization. Direct Search Methods of Optimization. Basics of Riemannian Differential Geometry. Geometric Methods of Optimization using Riemannian Langevin Dynamics. Stochastic Analysis on Manifolds and Geometric Optimization Methods. This textbook comprehensively treats both classical and geometric optimization methods, including deterministic and stochastic (Monte Carlo) schemes. It offers an extensive coverage of important topics including derivative-based methods, penalty function methods, method of gradient projection, evolutionary methods, geometric search using Riemannian Langevin dynamics and stochastic dynamics on manifolds. The textbook is accompanied by online resources including MATLAB codes which are uploaded on our website. The textbook is primarily written for senior undergraduate and graduate students in all applied science and engineering disciplines and can be used as a main or supplementary text for courses on classical and geometric optimization.
Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included
This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.
Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.
A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole" How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials Ideas on operator and parameter selection for a GA Detailed explanations of particle swarm optimization and multiple objective optimization An appendix of MATLAB code for experimentation
It is almost impossible to imagine life today without the electronics, communications and networks we have all come to take for granted. The 6G network is currently under development and some chips able to operate at the Terahertz (THz) scale have already been introduced, so the next decade will probably see the consolidation of 6G-based technology, as well as many compliant devices. This book presents the proceedings of the 11th International Conference on Electronics, Communications and Networks (CECNet 2021), initially planned to be held from 18-21 November 2021 in Beijing, China, but ultimately held as an online event due to ongoing COVID-19 restrictions. The CECNet series is now an established annual event attracting participants in the interrelated fields of electronics, computers, communications and wireless communications engineering and technology from around the world. Careful review by program committee members, who took into consideration the breadth and depth of those research topics that fall within the scope of CECNet, resulted in the selection of the 88 papers presented here from the 325 submissions received. This represents an acceptance rate of around 27%. Providing an overview of current research and developments in these rapidly evolving fields, the book will be of interest to all those working with digital communications networks.